Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Crovace is active.

Publication


Featured researches published by Antonio Crovace.


Veterinary Medicine International | 2010

Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

Antonio Crovace; Luca Lacitignola; Giacomo Rossi; E. Francioso

The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random order. In cBMSC- and BMMNCS-treated tendons, a high expression of cartilage oligomeric matrix protein (COMP) and type I collagen, but low levels of type III collagen were revealed by immunohistochemistry, with a normal longitudinally oriented fiber pattern. Placebo-treated tendons expressed very low quantities of COMP and type I collagen but large numbers of randomly oriented type III collagen fibers. Both cBMSC and BMMNCS grafts resulted in a qualitatively similar heling improvement of tendon extracellular matrix, in terms of the type I/III collagen ratio, fiber orientation, and COMP expression.


American Journal of Pathology | 2010

Therapeutic Targeting of Classical and Lectin Pathways of Complement Protects from Ischemia-Reperfusion-Induced Renal Damage

Giuseppe Castellano; Rita Melchiorre; Antonia Loverre; Pasquale Ditonno; Vincenzo Montinaro; Michele Rossini; Chiara Divella; Michele Battaglia; Giuseppe Lucarelli; Gennaro Annunziata; Silvano Palazzo; Francesco Paolo Selvaggi; Francesco Staffieri; Antonio Crovace; Mohamed R. Daha; Maurice Mannesse; Sandra van Wetering; Francesco Paolo Schena; Giuseppe Grandaliano

Ischemia-reperfusion injury is the major cause of delayed graft function in transplanted kidneys, an early event significantly affecting long-term graft function and survival. Several studies in rodents suggest that the alternative pathway of the complement system plays a pivotal role in renal ischemia-reperfusion injury. However, limited information is currently available from humans and larger animals. Here we demonstrated that 30 minutes of ischemia resulted in the induction of C4d/C1q, C4d/MLB, and MBL/MASP-2 deposits in a swine model of ischemia-reperfusion injury. The infusion of C1-inhibitor led to a significant reduction in peritubular capillary and glomerular C4d and C5b-9 deposition. Moreover, complement-inhibiting treatment significantly reduced the numbers of infiltrating CD163(+), SWC3a(+), CD4a(+), and CD8a(+) cells. C1-inhibitor administration led to significant inhibition of tubular damage and tubular epithelial cells apoptosis. Interestingly, we report that focal C4d-deposition colocalizes with C1q and MBL at the peritubular and glomerular capillary levels also in patients with delayed graft function. In conclusion, we demonstrated the activation and a pathogenic role of classical and lectin pathways of complement in a swine model of ischemia-reperfusion-induced renal damage. Therefore, inhibition of these two pathways might represent a novel therapeutic approach in the prevention of delayed graft function in kidney transplant recipients.


American Journal of Respiratory and Critical Care Medicine | 2009

Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study.

Salvatore Grasso; Tania Stripoli; Marianna Sacchi; Paolo Trerotoli; Francesco Staffieri; Delia Franchini; Valentina De Monte; Valerio Valentini; Paolo Pugliese; Antonio Crovace; Bernd Driessen; Tommaso Fiore

RATIONALE The open lung strategy aims at reopening (recruitment) of nonaerated lung areas in patients with acute respiratory distress syndrome, avoiding tidal alveolar hyperinflation in the limited area of normally aerated tissue (baby lung). OBJECTIVES We tested the hypothesis that recruited lung areas do not resume elastic properties of adjacent baby lung. METHODS Twenty-five anesthetized, mechanically ventilated pigs were studied. Four lung-healthy pigs served as controls and the remaining 21 were divided into three groups (n = 7 each) in which lung injury was produced by surfactant lavage, lipopolysaccharide infusion, or hydrochloride inhalation. Computed tomography scans, respiratory mechanics, and gas exchange parameters were recorded under three conditions: at baseline, during lung recruitment maneuver, and at end-expiration and end-inspiration when ventilating after an open lung protocol. MEASUREMENTS AND MAIN RESULTS During recruitment maneuver and open lung protocol, the gas volume entering the insufficiently aerated compartment was 96% (75-117%) and 48% (41-63%) (median [interquartile range]) of the functional residual capacity measured before and at zero end-expiratory pressure, respectively. Nonetheless, the volume of hyperinflated lung increased during both recruitment maneuver (by 1-28% of total lung volume; P < 0.01) and open lung protocol ventilation at end-inspiration (by 1-15% of total lung volume; P < 0.01). Regional elastance of recruited lung tissue was consistently higher than that of the baby lung regardless of the ARDS model (P < 0.01). CONCLUSIONS Alveolar recruitment is not protective against hyperinflation of the baby lung because lung parenchyma is inhomogeneous during ventilation with the open lung strategy.


Journal of The American Society of Nephrology | 2004

Ischemia-Reperfusion Induces Glomerular and Tubular Activation of Proinflammatory and Antiapoptotic Pathways: Differential Modulation by Rapamycin

Antonia Loverre; Pasquale Ditonno; Antonio Crovace; Loreto Gesualdo; Elena Ranieri; Paola Pontrelli; Giovanni Stallone; Barbara Infante; Antonio Schena; Salvatore Di Paolo; Carmen Capobianco; Michele Ursi; Silvano Palazzo; Michele Battaglia; Francesco Paolo Selvaggi; Francesco Paolo Schena; Giuseppe Grandaliano

Ischemia-reperfusion (I-R) injury in transplanted kidney, a key pathogenic event of delayed graft function (DGF), is characterized by tubular cell apoptosis and interstitial inflammation. Akt-mammalian target of rapamycin-S6k and NF-kappaB-inducing kinase (NIK)-NF-kappaB axis are the two main signaling pathways regulating cell survival and inflammation. Rapamycin, an immunosuppressive drug inhibiting the Akt axis, is associated with a prolonged DGF. The aim of this study was to evaluate Akt and NF-kappaB axis activation in patients who had DGF and received or not rapamycin and in a pig model of I-R and the role of coagulation priming in this setting. In graft biopsies from patients who were not receiving rapamycin, phosphorylated Akt increased in proximal tubular, interstitial, and mesangial cells with a clear nuclear translocation. The same pattern of activation was observed for S6k and NIK. However, in rapamycin-treated patients, a significant reduction of S6k but not Akt and NIK activation was observed. A time-dependent activation of phosphatidylinositol 3-kinase, Akt, S6k, and NIK was observed in the experimental model with the same pattern reported for transplant recipients who did not receive rapamycin. Extensive interstitial and glomerular fibrin deposition was observed both in pig kidneys upon reperfusion and in DGF human biopsies. It is interesting that the activation of both Akt and NIK-NF-kappaB pathways was induced by thrombin in cultured proximal tubular cells. In conclusion, the data suggest that (1) coagulation may play a pathogenic role in I-R injury; (2) the Akt axis is activated after I-R, and its inhibition may explain the prolonged DGF observed in rapamycin-treated patients; and (3) NIK activation in I-R and DGF represents a proinflammatory, rapamycin-insensitive signal, potentially leading to progressive graft injury.


Veterinary Research Communications | 2007

Cell Therapy for Tendon Repair in Horses: An Experimental Study

Antonio Crovace; Luca Lacitignola; R. De Siena; Giacomo Rossi; E. Francioso

Crovace, A., Lacitignola, L., De siena, R., Rossi, G. and Francioso, E., 2007. Cell therapy for tendon repair in horses: An experimental study. Veterinary Research Communications, 31(Suppl. 1), 281–283


Nephrology Dialysis Transplantation | 2014

Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway

Claudia Curci; Giuseppe Castellano; Alessandra Stasi; Chiara Divella; Antonia Loverre; Margherita Gigante; Simona Simone; Marica Cariello; Vincenzo Montinaro; Giuseppe Lucarelli; Pasquale Ditonno; Michele Battaglia; Antonio Crovace; Francesco Staffieri; Beatrijs D. Oortwijn; Edwin V Amersfoort; Loreto Gesualdo; Giuseppe Grandaliano

BACKGROUND Increasing evidence demonstrates a phenotypic plasticity of endothelial cells (ECs). Endothelial-to-mesenchymal transition (EndMT) contributes to the development of tissue fibrosis. However, the pathogenic factors and signalling pathways regulating this process in ischaemia/reperfusion (I/R) injury are still poorly understood. METHODS We investigated the possible role of complement in the induction of this endothelial dysfunction in a swine model of renal I/R injury by using recombinant C1 inhibitor in vivo. RESULTS Here, we showed that I/R injury reduced the density of renal peritubular capillaries and induced tissue fibrosis with generation of CD31(+)/α-SMA(+) and CD31(+)/FPS-1(+) cells indicating EndMT. When we inhibited complement, the process of EndMT became rare, with preserved density of peritubular capillaries and significant reduction in renal fibrosis. When we activated ECs by anaphylatoxins in vitro, C3a and C5a led to altered endothelial phenotype with increased expression of fibroblast markers and decrease expression of specific endothelial markers. The activation of Akt pathway was pivotal for the C3a and C5a-induced EndMT in vitro. In accordance, inhibition of complement in vivo led to the abrogation of Akt signalling, with hampered EndMT and tissue fibrosis. CONCLUSIONS Our data demonstrate a critical role for complement in the acute induction of EndMT via the Akt pathway. Therapeutic inhibition of these systems may be essential to prevent vascular damage and tissue fibrosis in transplanted kidney.


Veterinary and Comparative Orthopaedics and Traumatology | 2008

Histology and immunohistochemistry study of ovine tendon grafted with cBMSCs and BMMNCs after collagenase-induced tendinitis

Antonio Crovace; Luca Lacitignola; E. Francioso; Giacomo Rossi

OBJECTIVES The aim of this study was to compare the regeneration abilities of cultured bone marrow mesenchymal cells (cBMSC) and bone marrow mononuclear cells (BMMNC) with fibrin glue, saline solution and sham control in collagenase-induced tendinitis of the Achilles tendon in sheep. METHODS Six sheep were recruited randomly to each group: cBMSC, BMMNC, fibrin, saline and sham control. Each group received the relative treatment two weeks after inducing lesions (T(0)). After eight weeks (T(8)) of treatment, the tendons were harvested and evaluated for histomorphology, Collagen type I, III, Cartilage Oligomeric Matrix Protein (COMP) and CD34 positive cells expression. RESULTS Histology and immunohistochemistry showed similar capabilities of cBMSC and BMMNC to restore the architecture of fibres and Extra Cellular Matrix (ECM), with a high expression of collagen type I and COMP and a very low expression of collagen type III in treated tendons. The complete architectural disruption of fibres, dramatic reduction of collagen Type I and COMP expression and increase collagen type III expression were commonly observed in tendons treated with fibrin or saline only. The presence of CD34 positive cells was appreciable in the BMMNC group while few cBMSC showed this cluster of differentiation, not expressed in tendons treated with fibrin or saline. CLINICAL SIGNIFICANCE The data in this study show the efficacy of cBMSC and BMMNC in regenerating tendon tissue after collagenase-induced tendinitis.


Critical Care Medicine | 2012

Physiological effects of an open lung ventilatory strategy titrated on elastance-derived end-inspiratory transpulmonary pressure: Study in a pig model*

Francesco Staffieri; Tania Stripoli; Valentina De Monte; Antonio Crovace; Marianna Sacchi; Michele De Michele; Paolo Trerotoli; Pierpaolo Terragni; V. Marco Ranieri; Salvatore Grasso

Rationale:In the presence of increased chest wall elastance, the airway pressure does not reflect the lung-distending (transpulmonary) pressure. Objective:To compare the physiological effects of a conventional open lung approach titrated for an end-inspiratory airway opening plateau pressure (30 cm H2O) with a transpulmonary open lung approach titrated for a elastance-derived end-inspiratory plateau transpulmonary pressure (26 cm H2O), in a pig model of acute respiratory distress syndrome (HCl inhalation) and reversible chest wall mechanical impairment (chest wall and abdomen restriction). Methods:In eight pigs, physiological parameters and computed tomography were recorded under three conditions: 1) conventional open lung approach, normal chest wall; 2) conventional open lung approach, stiff chest wall; and 3) transpulmonary open lung approach, stiff chest wall. Measurements and Main Results:As compared with the normal chest wall condition, at end-expiration non aerated lung tissue weight was increased by 116 ± 68 % during the conventional open lung approach and by 28 ± 41 % during the transpulmonary open lung approach (p < .01), whereas cardiac output was decreased by 27 ± 19 % and 22 ± 14 %, respectively (p = not significant). Conclusion:In this model, the end-inspiratory transpulmonary open lung approach minimized the impact of chest wall stiffening on alveolar recruitment without causing hemodynamic impairment.


British Journal of Haematology | 2013

Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia‐bearing mice

Augusto Pessina; Valentina Coccè; Luisa Pascucci; Arianna Bonomi; Loredana Cavicchini; Francesca Sisto; Maura Ferrari; Emilio Ciusani; Antonio Crovace; Maria Laura Falchetti; Sonia Zicari; Arnaldo Caruso; Stefania Elena Navone; Giovanni Marfia; Anna Benetti; P. Ceccarelli; Eugenio Parati; Giulio Alessandri

Current leukaemia therapy focuses on increasing chemotherapy efficacy. Mesenchymal stromal cells (MSCs) have been proposed for carrying and delivery drugs to improve killing of cancer cells. We have shown that MSCs loaded with Paclitaxel (PTX) acquire a potent anti‐tumour activity. We investigated the effect of human MSCs (hMSCs) and mouse SR4987 loaded with PTX (hMSCsPTX and SR4987PTX) on MOLT‐4 and L1210, two leukaemia cell (LCs) lines of human and mouse origin, respectively. SR4987PTX and hMSCsPTX showed strong anti‐LC activity. hMSCsPTX, co‐injected with MOLT‐4 cells or intra‐tumour injected into established subcutaneous MOLT‐4 nodules, strongly inhibited growth and angiogenesis. In BDF1‐mice‐bearing L1210, the intraperitoneal administration of SR4987PTX doubled mouse survival time. In vitro, both hMSCs and hMSCsPTX released chemotactic factors, bound and formed rosettes with LCs. In ultrastructural analysis of rosettes, hMSCsPTX showed no morphological alterations while the attached LCs were apoptotic and necrotic. hMSCs and hMSCsPTX released molecules that reduced LC adhesion to microvascular endothelium (hMECs) and down‐modulated ICAM1 and VCAM1 on hMECs. Priming hMSCs with PTX is a simple procedure that does not require any genetic cell manipulation. Once the effectiveness of hMSCsPTX on established cancers in mice is proven, this procedure could be proposed for leukaemia therapy in humans.


Veterinary Anaesthesia and Analgesia | 2010

Effects of two fractions of inspired oxygen on lung aeration and gas exchange in cats under inhalant anaesthesia

Francesco Staffieri; Valentina De Monte; Carmelinda De Marzo; Salvatore Grasso; Antonio Crovace

OBJECTIVE To compare the effects of two fractions of inspired oxygen (FiO(2)) (0.4 and 1) on lung aeration and gas exchange during general anaesthesia in cats. STUDY DESIGN Randomized, blinded, controlled study. ANIMALS Thirty healthy, mixed breed, client owned female cats. MATERIALS AND METHODS Cats were premedicated intramuscularly with acepromazine (0.03 mg kg(-1)) and medetomidine (0.015 mg kg(-1)). Anaesthesia was induced with propofol (5 mg kg(-1)) and, after orotracheal intubation, maintained with isoflurane carried by either 100% oxygen (G100, n=15) or an oxygen-air mixture with 40% oxygen (G40, n=15). All cats were placed in dorsal recumbency and breathed spontaneously throughout the entire procedure. Following surgery (ovariectomy), a spiral computed tomography (CT) of the thorax was performed, arterial oxygen (PaO(2)) and carbon dioxide (PaCO(2)) tensions were measured and alveolar-arterial gradient of oxygen [P(A-a)O(2) ] calculated. The CT images were analysed for lung aeration by the analysis of radiograph attenuations (Hounsfield units, HU), according to the following classification: hyperinflated area (-1000 to -900 HU), normally aerated area (-900 to -500 HU), poorly aerated area (-500 to -100 HU) and non-aerated area (-100 to +100 HU). The groups were compared using one-way anova. RESULTS Compared to G100, the normally-aerated lung area was significantly greater and the poorly-aerated and non-aerated areas were significantly smaller in G40. PaCO(2) was similar in both groups. PaO(2) and P(A-a)O(2) were significantly higher in G100. In both groups, pulmonary atelectasis developed preferentially in the caudal lung fields. CONCLUSION In cats anaesthetised with isoflurane, the administration of an FiO(2) of >0.9 significantly impaired lung aeration and gas exchange as compared to an FiO(2) of 0.4. CLINICAL RELEVANCE An FiO(2) of 0.4 may better preserve lung aeration and gas exchange in anaesthetised spontaneously breathing cats but monitoring is essential to ensure oxygenation is adequate.

Collaboration


Dive into the Antonio Crovace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge