Antonio D. Uttaro
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio D. Uttaro.
FEBS Journal | 2006
Karina E.J. Trípodi; Laura V. Buttigliero; Silvia G. Altabe; Antonio D. Uttaro
A survey of the three kinetoplastid genome projects revealed the presence of three putative front‐end desaturase genes in Leishmania major, one in Trypanosoma brucei and two highly identical ones (98%) in T. cruzi. The encoded gene products were tentatively annotated as Δ8, Δ5 and Δ6 desaturases for L. major, and Δ6 desaturase for both trypanosomes. After phylogenetic and structural analysis of the deduced proteins, we predicted that the putative Δ6 desaturases could have Δ4 desaturase activity, based mainly on the conserved HX3HH motif for the second histidine box, when compared with Δ4 desaturases from Thraustochytrium, Euglena gracilis and the microalga, Pavlova lutheri, which are more than 30% identical to the trypanosomatid enzymes. After cloning and expression in Saccharomyces cerevisiae, it was possible to functionally characterize each of the front‐end desaturases present in L. major and T. brucei. Our prediction about the presence of Δ4 desaturase activity in the three kinetoplastids was corroborated. In the same way, Δ5 desaturase activity was confirmed to be present in L. major. Interestingly, the putative Δ8 desaturase turned out to be a functional Δ6 desaturase, being 35% and 31% identical to Rhizopus oryzae and Pythium irregulareΔ6 desaturases, respectively. Our results indicate that no conclusive predictions can be made about the function of this class of enzymes merely on the basis of sequence homology. Moreover, they indicate that a complete pathway for very‐long‐chain polyunsaturated fatty acid biosynthesis is functional in L. major using Δ6, Δ5 and Δ4 desaturases. In trypanosomes, only Δ4 desaturases are present. The putative algal origin of the pathway in kinetoplastids is discussed.
FEBS Journal | 2007
Verónica I. Livore; Karina E.J. Trípodi; Antonio D. Uttaro
Leishmania major synthesizes polyunsaturated fatty acids by using Δ6, Δ5 and Δ4 front‐end desaturases, which have recently been characterized [Tripodi KE, Buttigliero LV, Altabe SG & Uttaro AD (2006) FEBS J273, 271–280], and two predicted elongases specific for C18 Δ6 and C20 Δ5 polyunsaturated fatty acids, respectively. Trypanosoma brucei and Trypanosoma cruzi lack Δ6 and Δ5 desaturases but contain Δ4 desaturases, implying that trypanosomes use exogenous polyunsaturated fatty acids to produce C22 Δ4 fatty acids. In order to identify putative precursors of these C22 fatty acids and to completely describe the pathways for polyunsaturated fatty acid biosynthesis in trypanosomatids, we have performed a search in the three genomes and identified four different elongase genes in T. brucei, five in T. cruzi and 14 in L. major. After a phylogenetic analysis of the encoded proteins together with elongases from a variety of other organisms, we selected four candidate polyunsaturated fatty acid elongases. Leishmania major CAJ02037, T. brucei AAX69821 and T. cruzi XP_808770 share 57–52% identity, and group together with C20 Δ5 polyunsaturated fatty acid elongases from algae. The predicted activity was corroborated by functional characterization after expression in yeast. T. brucei elongase was also able to elongate Δ8 and Δ11 C20 polyunsaturated fatty acids. L. major CAJ08636, which shares 33% identity with Mortierella alpinaΔ6 elongase, showed a high specificity for C18 Δ6 polyunsaturated fatty acids. In all cases, a preference for n6 polyunsaturated fatty acids was observed. This indicates that L. major has, as predicted, Δ6 and Δ5 elongases and a complete pathway for polyunsaturated fatty acid biosynthesis. Trypanosomes contain only Δ5 elongases, which, together with Δ4 desaturases, allow them to use eicosapentaenoic acid and arachidonic acid, a precursor that is relatively abundant in the host, for C22 polyunsaturated fatty acid biosynthesis.
Fems Microbiology Letters | 2009
Gaspar E. Canepa; León A. Bouvier; Mariana R. Miranda; Antonio D. Uttaro; Claudio A. Pereira
L-Cysteine and methionine are unique amino acids that act as sulfur donors in all organisms. In the specific case of Trypanosomatids, L-cysteine is particularly relevant as a substrate in the synthesis of trypanothione. Although it can be synthesized de novo, L-cysteine is actively transported in Trypanosoma cruzi epimastigote cells. L-Cysteine uptake is highly specific; none of the amino acids assayed yield significant differences in terms of transport rates. L-Cysteine is transported by epimastigote cells with a calculated apparent K(m) of 49.5 microM and a V(max) of about 13 pmol min(-1) per 10(7) cells. This transport is finely regulated by amino acid starvation, extracellular pH, and between the parasite growth phases. In addition, L-cysteine is incorporated post-translationally into proteins, suggesting its role in iron-sulfur core formation. Finally, the metabolic fates of Lcysteine were predicted in silico.
International Journal for Parasitology | 2009
Andrés Alloatti; Sebastián A. Testero; Antonio D. Uttaro
Four positional isomers of Thiastearate (TS) and Isoxyl (Thiocarlide) were assayed as fatty acid desaturase inhibitors in Trypanosoma cruzi epimastigotes. 9-TS did not exert a significant effect on growth of T. cruzi, nor on the fatty acid profile of the parasite cells. One hundred micromolars of 10-TS totally inhibited growth, with an effective concentration for 50% growth inhibition (EC(50)) of 3.0+/-0.2microM. Growth inhibition was reverted by supplementing the culture media with oleate. The fatty acid profile of treated cells revealed that conversion of stearate to oleate and palmitate to palmitoleate were drastically reduced and, as a consequence, the total level of unsaturated fatty acids decreased from 60% to 32%. Isoxyl, a known inhibitor of stearoyl-CoA Delta9 desaturase in mycobacteria, had similar effects on T. cruzi growth (EC(50) 2.0+/-0.3microM) and fatty acid content, indicating that Delta9 desaturase was the target of both drugs. 12- and 13-TS were inhibitors of growth with EC(50) values of 50+/-2 and 10+/-3microM, respectively, but oleate or linoleate were unable to revert the effect. Both drugs increased the percentage of oleate and palmitate in the cell membrane and drastically reduced the content of linoleate from 38% to 16% and 12%, respectively, which is in agreement with a specific inhibition of oleate Delta12 desaturase. The absence of corresponding enzyme activity in mammalian cells and the significant structural differences between trypanosome and mammalian Delta9 desaturases, together with our results, highlight these enzymes as promising targets for selective chemotherapeutic intervention.
Molecular and Biochemical Parasitology | 2014
Antonio D. Uttaro
As components of phospholipids and glycosylphosphatidylinositol anchors, fatty acids are responsible for forming the core of biological membranes and the correct localization of proteins within membranes. They also contribute to anchoring proteins by direct acylation of specific amino acids. Fatty acids can be used as energy sources and serve as signaling molecules or precursors for their synthesis. All these processes highlight the important role of fatty acids in cell physiology, justifying the diverse strategies for their acquisition evolved by different organisms. This review describes several recent findings in the salvage and biosynthesis of fatty acids by parasitic protists belonging to the class Kinetoplastea. They include two biosynthetic routes, the mitochondrial one and a peculiar membrane-associated pathway, the synthesis of polyunsaturated fatty acids, and the scavenging of lysophospholipids and lipoproteins from host plasma. These different processes are also explored as putative targets for chemotherapy.
PLOS ONE | 2010
Andrés Alloatti; Shreedhara Gupta; Melisa Gualdrón-López; Mariana Igoillo-Esteve; Paul A. Nguewa; Gladys Deumer; Pierre Wallemacq; Silvia G. Altabe; Paul A. M. Michels; Antonio D. Uttaro
Background Trypanosomes can synthesize polyunsaturated fatty acids. Previously, we have shown that they possess stearoyl-CoA desaturase (SCD) and oleate desaturase (OD) to convert stearate (C18) into oleate (C18:1) and linoleate (C18:2), respectively. Here we examine if OD is essential to these parasites. Methodology Cultured procyclic (insect-stage) form (PCF) and bloodstream-form (BSF) Trypanosoma brucei cells were treated with 12- and 13-thiastearic acid (12-TS and 13-TS), inhibitors of OD, and the expression of the enzyme was knocked down by RNA interference. The phenotype of these cells was studied. Principal Findings Growth of PCF T. brucei was totally inhibited by 100 µM of 12-TS and 13-TS, with EC50 values of 40±2 and 30±2 µM, respectively. The BSF was more sensitive, with EC50 values of 7±3 and 2±1 µM, respectively. This growth phenotype was due to the inhibitory effect of thiastearates on OD and, to a lesser extent, on SCD. The enzyme inhibition caused a drop in total unsaturated fatty-acid level of the cells, with a slight increase in oleate but a drastic decrease in linoleate level, most probably affecting membrane fluidity. After knocking down OD expression in PCF, the linoleate content was notably reduced, whereas that of oleate drastically increased, maintaining the total unsaturated fatty-acid level unchanged. Interestingly, the growth phenotype of the RNAi-induced cells was similar to that found for thiastearate-treated trypanosomes, with the former cells growing twofold slower than the latter ones, indicating that the linoleate content itself and not only fluidity could be essential for normal membrane functionality. A similar deleterious effect was found after RNAi in BSF, even with a mere 8% reduction of OD activity, indicating that its full activity is essential. Conclusions/Significance As OD is essential for trypanosomes and is not present in mammalian cells, it is a promising target for chemotherapy of African trypanosomiasis.
Eukaryotic Cell | 2011
Mariela L. Tomazic; Sebastián R. Najle; Alejandro D. Nusblat; Antonio D. Uttaro; Clara B. Nudel
ABSTRACT The gene TTHERM_00438800 (DES24) from the ciliate Tetrahymena thermophila encodes a protein with three conserved histidine clusters, typical of the fatty acid hydroxylase superfamily. Despite its high similarity to sterol desaturase-like enzymes, the phylogenetic analysis groups Des24p in a separate cluster more related to bacterial than to eukaryotic proteins, suggesting a possible horizontal gene transfer event. A somatic knockout of DES24 revealed that the gene encodes a protein, Des24p, which is involved in the dealkylation of phytosterols. Knocked-out mutants were unable to eliminate the C-24 ethyl group from C29 sterols, whereas the ability to introduce other modifications, such as desaturations at positions C-5(6), C-7(8), and C-22(23), were not altered. Although C-24 dealkylations have been described in other organisms, such as insects, neither the enzymes nor the corresponding genes have been identified to date. Therefore, this is the first identification of a gene involved in sterol dealkylation. Moreover, the knockout mutant and wild-type strain differed significantly in growth and morphology only when cultivated with C29 sterols; under this culture condition, a change from the typical pear-like shape to a round shape and an alteration in the regulation of tetrahymanol biosynthesis were observed. Sterol analysis upon culture with various substrates and inhibitors indicate that the removal of the C-24 ethyl group in Tetrahymena may proceed by a mechanism different from the one currently known.
Eukaryotic Cell | 2009
Alejandro D. Nusblat; Sebastián R. Najle; Mariela L. Tomazic; Antonio D. Uttaro; Clara B. Nudel
ABSTRACT The gene coding for a C-5(6) sterol desaturase in Tetrahymena thermophila, DES5A, has been identified by the knockout of the TTHERM_01194720 sequence. Macronucleus transformation was achieved by biolistic bombardment and gene replacement through phenotypic assortment, using paromomycin as the selective agent. A knockout cell line (KO270) showed a phenotype consistent with that of the DES5A deletion mutant. KO270 converted only 6% of the added sterol into the C-5 unsaturated derivative, while the wild type accumulated 10-fold larger amounts under similar conditions. The decreased desaturation activity is specific for the C-5(6) position of lathosterol and cholestanol; other desaturations, namely C-7(8) and C-22(23), were not affected. Analysis by reverse transcription-PCR reveals that DES5A is transcribed both in the presence and absence of cholestanol in wild-type cells, whereas the transcribed gene was not detected in KO270. The growth of KO270 was undistinguishable from that of the wild-type strain. Des5Ap resembles known C-5(6) sterol desaturases, displaying the three typical histidine motifs, four hydrophobic transmembrane regions, and two other highly conserved domains of unknown function. A phylogenetic analysis placed T. thermophilas enzyme and Paramecium orthologues in a cluster together with functionally characterized C-5 sterol desaturases from vertebrates, fungi, and plants, although in a different branch.
Molecular Biology and Evolution | 2013
Sebastián R. Najle; Alejandro D. Nusblat; Clara B. Nudel; Antonio D. Uttaro
The ciliate Tetrahymena thermophila incorporates sterols from its environment that desaturates at positions C5(6), C7(8), and C22(23). Phytosterols are additionally modified by removal of the ethyl group at carbon 24 (C24). The enzymes involved are oxygen-, NAD(P)H-, and cytochrome b5 dependent, reason why they were classified as members of the hydroxylases/desaturases superfamily. The ciliates genome revealed the presence of seven putative sterol desaturases belonging to this family, two of which we have previously characterized as the C24-de-ethylase and C5(6)-desaturase. A Rieske oxygenase was also identified; this type of enzyme, with sterol C7(8)-desaturase activity, was observed only in animals, called Neverland in insects and DAF-36 in nematodes. They perform the conversion of cholesterol into 7-dehydrocholesterol, first step in the synthesis of the essential hormones ecdysteroids and dafachronic acids. By adapting an RNA interference-by-feeding protocol, we easily screened six of the eight genes described earlier, allowing the characterization of the Rieske-like oxygenase as the ciliates C7(8)-desaturase (Des7p). This characterization was confirmed by obtaining the corresponding knockout mutant, making Des7p the first nonanimal Rieske-sterol desaturase described. To our knowledge, this is the first time that the feeding-RNAi technique was successfully applied in T. thermophila, enabling to consider such methodology for future reverse genetics high-throughput screenings in this ciliate. Bioinformatics analyses revealed the presence of Des7p orthologs in other Oligohymenophorean ciliates and in nonanimal Opisthokonts, like the protists Salpingoeca rosetta and Capsaspora owczarzaki. A horizontal gene transfer event from a unicellular Opisthokont to an ancient phagotrophic Oligohymenophorean could explain the acquisition of the Rieske oxygenase by Tetrahymena.
Molecular and Biochemical Parasitology | 2012
Paola Vacchina; Karina E.J. Trípodi; Andrea M. Escalante; Antonio D. Uttaro
Six genes encoding putative sphingolipid desaturases have been identified in trypanosomatid genomes: one in Trypanosoma brucei (TbSLdes protein), one in Trypanosoma cruzi (TcSLdes) and four in Leishmania major (LmSLdes1-4), tandemly arrayed on chromosome 26. The six amino acid sequences showed the three characteristic histidine boxes, with a long spacer between the first and second box, as in fungal desaturases and bifunctional desaturases/hydroxylases, to which they are phylogenetically related. We functionally characterized the trypanosomatid enzymes by their expression in Saccharomyces cerevisiae sur2Δ mutant, which lacks C4-hydroxylase activity. The sphingoid base profile (dinitrophenyl derivatives) of each yeast mutant transformed with each one of the different parasite genes was analyzed by HPLC, using a sur2Δ mutant expressing the Schyzosaccharomyces pombe sphingolipid desaturase (SpSLdes) as positive control. TbSLdes was capable of desaturating endogenous sphingolipids at levels comparable to those found in SpSLdes. By contrast, L. major and T. cruzi enzymes showed either no or negligible activities. Using the HPLC system coupled to electrospray tandem quadrupole/time of flight mass spectrometry we were able to detect significant levels of desaturated and hydroxylated sphingoid bases in extracts of all transformed yeast mutants, except for those transformed with the empty vector. These results indicate that S. pombe, T. brucei, T. cruzi and L. major enzymes are all bifunctional. Using the same methodology, desaturated and hydroxylated sphingoid bases were detected in T. cruzi epimastigotes and L. major promastigote cells, as described previously, and in T. brucei procyclic and bloodstream forms for the first time.