Antonio F. Pardiñas
Cardiff University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio F. Pardiñas.
Journal of Agricultural and Food Chemistry | 2011
Eva Garcia-Vazquez; Juliana Perez; Jose L. Martinez; Antonio F. Pardiñas; Belén López; Nikoletta Karaiskou; Mary F. Casa; Gonzalo Machado-Schiaffino; Alexander Triantafyllidis
DNA analysis of hake products commercialized in southern European (Spanish and Greek) market chains have demonstrated more than 30% mislabeling, on the basis of species substitution. Tails and fillets were more mislabeled than other products, such as slices and whole pieces. African species were substitute species for products labeled as American and European species, and we suggest it is a case of deliberate economically profitable mislabeling because real market prices of European and American hake products are higher than those of African in Spanish market chains. The presented results suggest fraud detection that disadvantages African producers. Government-mandated genetic surveys of commercial hakes and the use of subsequent statements of fair trade on labels of seafood products could help to reduce fraud levels in a global market of increasingly conscious consumers sensitive to ethical issues.
Nature Genetics | 2018
Antonio F. Pardiñas; Peter Holmans; Andrew Pocklington; Valentina Escott-Price; Stephan Ripke; Noa Carrera; Sophie E. Legge; Sophie Bishop; Darren Cameron; Marian Lindsay Hamshere; Jun Han; Leon Hubbard; Amy Lynham; Kiran Kumar Mantripragada; Elliott Rees; James H. MacCabe; Steven A. McCarroll; Bernhard T. Baune; Gerome Breen; Enda M. Byrne; Udo Dannlowski; Thalia C. Eley; Caroline Hayward; Nicholas G. Martin; Andrew M. McIntosh; Robert Plomin; David J. Porteous; Naomi R. Wray; Armando Caballero; Daniel H. Geschwind
Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide insights. We report a new genome-wide association study of schizophrenia (11,260 cases and 24,542 controls), and through meta-analysis with existing data we identify 50 novel associated loci and 145 loci in total. Through integrating genomic fine-mapping with brain expression and chromosome conformation data, we identify candidate causal genes within 33 loci. We also show for the first time that the common variant association signal is highly enriched among genes that are under strong selective pressures. These findings provide new insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation-intolerant genes and suggest a mechanism by which common risk variants persist in the population.A new GWAS of schizophrenia (11,260 cases and 24,542 controls) and meta-analysis identifies 50 new associated loci and 145 loci in total. The common variant association signal is highly enriched in mutation-intolerant genes and in regions under strong background selection.
JAMA Psychiatry | 2016
Elliott Rees; Kimberley Kendall; Antonio F. Pardiñas; Sophie E. Legge; Andrew Pocklington; Valentina Escott-Price; James H. MacCabe; David A. Collier; Peter Holmans; Michael Conlon O'Donovan; Michael John Owen; James Tynan Rhys Walters; George Kirov
IMPORTANCE At least 11 rare copy number variants (CNVs) have been shown to be major risk factors for schizophrenia (SZ). These CNVs also increase the risk for other neurodevelopmental disorders, such as intellectual disability. It is possible that additional intellectual disability-associated CNVs increase the risk for SZ but have not yet been implicated in SZ because of previous studies being underpowered. OBJECTIVE To examine whether additional CNVs implicated in intellectual disability represent novel SZ risk loci. DESIGN, SETTING, AND PARTICIPANTS We used single-nucleotide polymorphism (SNP) array data to evaluate a set of 51 CNVs implicated in intellectual disability (excluding the known SZ loci) in a large data set of patients with SZ and healthy persons serving as controls recruited in a variety of settings. We analyzed a new sample of 6934 individuals with SZ and 8751 controls and combined those data with previously published large data sets for a total of 20 403 cases of SZ and 26 628 controls. MAIN OUTCOMES AND MEASURES Burden analysis of CNVs implicated in intellectual disability (excluding known SZ CNVs) for association with SZ. Association of individual intellectual disability CNV loci with SZ. RESULTS Of data on the 20 403 cases (6151 [30.15%] female) and 26 628 controls (14 252 [53.52%] female), 51 intellectual disability CNVs were analyzed. Collectively, intellectual disability CNVs were significantly enriched for SZ (P = 1.0 × 10-6; odds ratio [OR], 1.9 [95% CI, 1.46-2.49]). Of the 51 CNVs tested, 19 (37%) were more common in SZ cases; only 4 (8%) were more common in controls (no observations were made for the remaining 28 [55%] loci). One novel locus, deletion at 16p12.1, was significantly associated with SZ after correction for multiple testing (rate in SZ, 33 [0.16%]; rate in controls, 12 [0.05%]; corrected P = .017; OR, 3.3; 95% CI, 1.61-7.05), and 2 loci reached nominal levels of significance (deletions at 2q11.2: 6 [0.03%] vs 1 [0.004%]; OR, 9.3; 95% CI, 1.03-447.76; corrected P > .99; and duplications at 10q11.21q11.23: 5 [0.2%] vs 0 [0.03%]; OR, infinity; 95% CI, 1.26-infinity; corrected P = .71). Our new data set also provided independent support for the 11 SZ risk loci previously reported to be associated with the disorder and for the protective effect of 22q11.2 duplication. CONCLUSIONS AND RELEVANCE A large proportion of CNV loci implicated in intellectual disability are risk factors for SZ, but the available sample size precludes statistical confirmation for additional individual loci.
Nature Genetics | 2018
Nathan Skene; Trygve E. Bakken; Gerome Breen; James J. Crowley; Héléna A. Gaspar; Paola Giusti-Rodriguez; Rebecca Hodge; Jeremy A. Miller; Ana B. Muñoz-Manchado; Michael C. O’Donovan; Michael John Owen; Antonio F. Pardiñas; Jesper Ryge; James Tynan Rhys Walters; Sten Linnarsson; Ed Lein; Patrick F. Sullivan; Jens Hjerling-Leffler
With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. By applying knowledge of the cellular taxonomy of the brain from single-cell RNA sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common-variant genomic results consistently mapped to pyramidal cells, medium spiny neurons (MSNs) and certain interneurons, but far less consistently to embryonic, progenitor or glial cells. These enrichments were due to sets of genes that were specifically expressed in each of these cell types. We also found that many of the diverse gene sets previously associated with schizophrenia (genes involved in synaptic function, those encoding mRNAs that interact with FMRP, antipsychotic targets, etc.) generally implicated the same brain cell types. Our results suggest a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. The genetic risk associated with MSNs did not overlap with that of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically distinct roles in schizophrenia.Integration of single-cell RNA sequencing with genome-wide association data implicates specific brain cell types in schizophrenia. Gene sets previously associated with schizophrenia implicate the same cell types, which include pyramidal cells and medium spiny neurons.
Molecular Psychiatry | 2017
Sophie E. Legge; Marian Lindsay Hamshere; Stephan Ripke; Antonio F. Pardiñas; Jackie Goldstein; Elliott Rees; Alexander Richards; Ganna M. Leonenko; L. F. Jorskog; Jacqueline I. Goldstein; L. Fredrik Jarskog; Chris Hilliard; Ana Alfirevic; Laramie Duncan; Denie Fourches; Hailiang Huang; Monkol Lek; Benjamin M. Neale; Jin P. Szatkiewicz; Alexander Tropsha; Edwin J. C. G. van den Oord; Ingolf Cascorbi; Michael Dettling; Ephraim Gazit; Donald C. Goff; Arthur L. Holden; Deanna L. Kelly; Anil K. Malhotra; Jimmi Nielsen; Munir Pirmohamed
The antipsychotic clozapine is uniquely effective in the management of schizophrenia; however, its use is limited by its potential to induce agranulocytosis. The causes of this, and of its precursor neutropenia, are largely unknown, although genetic factors have an important role. We sought risk alleles for clozapine-associated neutropenia in a sample of 66 cases and 5583 clozapine-treated controls, through a genome-wide association study (GWAS), imputed human leukocyte antigen (HLA) alleles, exome array and copy-number variation (CNV) analyses. We then combined associated variants in a meta-analysis with data from the Clozapine-Induced Agranulocytosis Consortium (up to 163 cases and 7970 controls). In the largest combined sample to date, we identified a novel association with rs149104283 (odds ratio (OR)=4.32, P=1.79 × 10−8), intronic to transcripts of SLCO1B3 and SLCO1B7, members of a family of hepatic transporter genes previously implicated in adverse drug reactions including simvastatin-induced myopathy and docetaxel-induced neutropenia. Exome array analysis identified gene-wide associations of uncommon non-synonymous variants within UBAP2 and STARD9. We additionally provide independent replication of a previously identified variant in HLA-DQB1 (OR=15.6, P=0.015, positive predictive value=35.1%). These results implicate biological pathways through which clozapine may act to cause this serious adverse effect.
bioRxiv | 2016
Antonio F. Pardiñas; Peter Holmans; Andrew Pocklington; Valentina Escott-Price; Ripke Stephan; Noa Carrera; E, Legge, Sophie; Bishop Sophie; Cameron Darren; Marian Lindsay Hamshere; Han Jun; Leon Hubbard; Amy Lynham; Kiran Kumar Mantripragada; Elliott Rees; H, MacCabe, James; A, McCarroll, Stephen; T, Baune, Bernhard; Breen Gerome; M, Byrne, Enda; Dannlowski Udo; C, Eley, Thalia; Hayward Caroline; G, Martin, Nicholas; M. McIntosh Andrew; Plomin Robert; J, Porteous, David; R, Wray, Naomi; A, Collier, David; Rujescu Dan
Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide such insight. We report the largest single cohort genome-wide association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association statistics we implicate an additional set of 22 novel associations that map onto a single gene. We show for the first time that the common variant association signal is highly enriched among genes that are intolerant to loss of function mutations and that variants in these genes persist in the population despite the low fecundity associated with the disorder through the process of background selection. Associations point to novel areas of biology (e.g. metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six independent central nervous system functional gene sets in schizophrenia pathophysiology. These findings provide novel insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation intolerant genes and suggest a mechanism by which common risk variants are maintained in the population.
JAMA Psychiatry | 2018
Judith Allardyce; Ganna M. Leonenko; Marian Lindsay Hamshere; Antonio F. Pardiñas; Liz Forty; Sarah Knott; Katherine Gordon-Smith; David J. Porteous; Caroline Haywood; Arianna Di Florio; Lisa Jones; Andrew M. McIntosh; Michael John Owen; Peter Holmans; James Tynan Rhys Walters; Nicholas John Craddock; Ian Richard Jones; Michael C. O’Donovan; Valentina Escott-Price
Importance Bipolar disorder (BD) overlaps schizophrenia in its clinical presentation and genetic liability. Alternative approaches to patient stratification beyond current diagnostic categories are needed to understand the underlying disease processes and mechanisms. Objective To investigate the association between common-variant liability for schizophrenia, indexed by polygenic risk scores (PRSs), and psychotic presentations of BD. Design, Setting, and Participants This case-control study in the United Kingdom used multinomial logistic regression to estimate differential PRS associations across categories of cases and controls. Participants included in the final analyses were 4436 cases of BD from the Bipolar Disorder Research Network. These cases were compared with the genotypic data for 4976 cases of schizophrenia and 9012 controls from the Type 1 Diabetes Genetics Consortium study and the Generation Scotland study. Data were collected between January 1, 2000, and December 31, 2013. Data analysis was conducted from March 1, 2016, to February 28, 2017. Exposures Standardized PRSs, calculated using alleles with an association threshold of P < .05 in the second Psychiatric Genomics Consortium genome-wide association study of schizophrenia, were adjusted for the first 10 population principal components and genotyping platforms. Main Outcomes and Measures Multinomial logit models estimated PRS associations with BD stratified by Research Diagnostic Criteria subtypes of BD, by lifetime occurrence of psychosis, and by lifetime mood-incongruent psychotic features. Ordinal logistic regression examined PRS associations across levels of mood incongruence. Ratings were derived from the Schedules for Clinical Assessment in Neuropsychiatry interview and the Bipolar Affective Disorder Dimension Scale. Results Of the 4436 cases of BD, 2966 (67%) were female patients, and the mean (SD) age at interview was 46 [12] years. Across clinical phenotypes, there was an exposure-response gradient, with the strongest PRS association for schizophrenia (risk ratio [RR] = 1.94; 95% CI, 1.86-2.01), followed by schizoaffective BD (RR = 1.37; 95% CI, 1.22-1.54), bipolar I disorder subtype (RR = 1.30; 95% CI, 1.24-1.36), and bipolar II disorder subtype (RR = 1.04; 95% CI, 0.97-1.11). Within BD cases, there was an effect gradient, indexed by the nature of psychosis. Prominent mood-incongruent psychotic features had the strongest association (RR = 1.46; 95% CI, 1.36-1.57), followed by mood-congruent psychosis (RR = 1.24; 95% CI, 1.17-1.33) and BD with no history of psychosis (RR = 1.09; 95% CI, 1.04-1.15). Conclusions and Relevance For the first time to date, a study shows a polygenic-risk gradient across schizophrenia and BD, indexed by the occurrence and level of mood-incongruent psychotic symptoms.
Journal of Human Genetics | 2012
Antonio F. Pardiñas; Agustín Roca; Eva Garcia-Vazquez; Belén López
Phylogeography of the mitochondrial lineages commonly found in Western Europe can be interpreted in the light of a postglacial resettlement of the continent. The center of this proposal lies in the Franco-Cantabrian glacial refuge, located in the northern Iberian Peninsula and Southwestern France. Recently, this interpretation has been confronted by the unexpected patterns of diversity found in some European haplogroups. To shed new lights on this issue, research on Iberian populations is crucial if events behind the actual genetics of the European continent are to be untangled. In this regard, the region of Asturias has not been extensively studied, despite its convoluted history with prolonged periods of isolation. As mitochondrial DNA is a kind of data that has been commonly used in human population genetics, we conducted a thorough regional study in which we collected buccal swabs from 429 individuals with confirmed Asturian ancestry. The joint analysis of these sequences with a large continent-wide database and previously published diversity patterns allowed us to discuss a new explanation for the population dynamics inside the Franco-Cantabrian area, based on range expansion theory. This approximation to previously contradictory findings has made them compatible with most proposals about the postglacial resettlement of Western Europe.
bioRxiv | 2018
Laura M. Huckins; Amanda Dobbyn; Douglas Ruderfer; Gabriel E. Hoffman; Weiqing Wang; Antonio F. Pardiñas; Veera M. Rajagopal; Thomas Damm Als; Hoang Tan Hoang; Kiran Girdhar; James Boocock; Panagiotis Roussos; Menachem Fromer; Robin Kramer; Enrico Domenici; Eric R. Gamazon; Shaun Purcell; Ditte Demontis; Anders D. Børglum; James Tynan Rhys Walters; Michael Conlon O'Donovan; Patrick F. Sullivan; Michael John Owen; Bernie Devlin; Solveig K. Sieberts; Nancy J. Cox; Hae Kyung Im; Pamela Sklar; Eli A. Stahl
Transcriptomic imputation approaches offer an opportunity to test associations between disease and gene expression in otherwise inaccessible tissues, such as brain, by combining eQTL reference panels with large-scale genotype data. These genic associations could elucidate signals in complex GWAS loci and may disentangle the role of different tissues in disease development. Here, we use the largest eQTL reference panel for the dorso-lateral pre-frontal cortex (DLPFC), collected by the CommonMind Consortium, to create a set of gene expression predictors and demonstrate their utility. We applied these predictors to 40,299 schizophrenia cases and 65,264 matched controls, constituting the largest transcriptomic imputation study of schizophrenia to date. We also computed predicted gene expression levels for 12 additional brain regions, using publicly available predictor models from GTEx. We identified 413 genic associations across 13 brain regions. Stepwise conditioning across the genes and tissues identified 71 associated genes (67 outside the MHC), with the majority of associations found in the DLPFC, and of which 14/67 genes did not fall within previously genome-wide significant loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple pathways associated with porphyric disorders. We investigated developmental expression patterns for all 67 non-MHC associated genes using BRAINSPAN, and identified groups of genes expressed specifically pre-natally or post-natally.
bioRxiv | 2017
Judith Allardyce; Ganna M. Leonenko; Marian Lindsay Hamshere; Antonio F. Pardiñas; Liz Forty; Sarah Knott; Katherine Gordon-Smith; David J. Porteous; Caroline Hayward; Arianna Di Florio; Lisa A. Jones; Andrew M. McIntosh; Michael John Owen; Peter Holmans; James Tynan Rhys Walters; Nicholas John Craddock; Ian Richard Jones; Michael Conlon O'Donovan; Valentina Escott-Price
Abstract Importance Bipolar disorder (BD) overlaps schizophrenia in its clinical presentation and genetic liability. Alternative approaches to patient stratification beyond current diagnostic categories are needed to understand the underlying disease processes/mechanisms. Objectives To investigate the relationship between common-variant liability for schizophrenia, indexed by polygenic risk scores (PRS) and psychotic presentations of BD, using clinical descriptions which consider both occurrence and level of mood-incongruent psychotic features. Design Case-control design: using multinomial logistic regression, to estimate differential associations of PRS across categories of cases and controls. Settings & Participants 4399 BDcases, mean [sd] age-at-interview 46[12] years, of which 2966 were woman (67%) from the BD Research Network (BDRN) were included in the final analyses, with data for 4976 schizophrenia cases and 9012 controls from the Type-1 diabetes genetics consortium and Generation Scotland included for comparison. Exposure Standardised PRS, calculated using alleles with an association p-value threshold < 0.05 in the second Psychiatric Genomics Consortium genome-wide association study of schizophrenia, adjusted for the first 10 population principal components and genotyping-platform. Main outcome measure Multinomial logit models estimated PRS associations with BD stratified by (1) Research Diagnostic Criteria (RDC) BD subtypes (2) Lifetime occurrence of psychosis.(3) Lifetime mood-incongruent psychotic features and (4) ordinal logistic regression examined PRS associations across levels of mood-incongruence. Ratings were derived from the Schedule for Clinical Assessment in Neuropsychiatry interview (SCAN) and the Bipolar Affective Disorder Dimension Scale (BADDS). Results Across clinical phenotypes, there was an exposure-response gradient with the strongest PRS association for schizophrenia (RR=1.94, (95% C.I. 1.86, 2.01)), then schizoaffective BD (RR=1.37, (95% C.I. 1.22, 1.54)), BD I (RR= 1.30, (95% C.I. 1.24, 1.36)) and BD II (RR=1.04, (95% C.I. 0.97, 1.11)). Within BD cases, there was an effect gradient, indexed by the nature of psychosis, with prominent mood-incongruent psychotic features having the strongest association (RR=1.46, (95% C.I. 1.36, 1.57)), followed by mood-congruent psychosis (RR= 1.24, (95% C.I. 1.17, 1.33)) and lastly, BD cases with no history of psychosis (RR=1.09, (95% C.I. 1.04, 1.15)). Conclusion We show for the first time a polygenic-risk gradient, across schizophrenia and bipolar disorder, indexed by the occurrence and level of mood-incongruent psychotic symptoms.Importance Bipolar disorder (BD) overlaps schizophrenia in its clinical presentation and genetic liability. Alternative approaches to patient stratification beyond current diagnostic categories are needed to understand the underlying disease processes/mechanisms. Objectives To investigate the relationship between common-variant liability for schizophrenia, indexed by polygenic risk scores (PRS) and psychotic presentations of BD, using clinical descriptions which consider both occurrence and level of mood-incongruent psychotic features. Design Case-control design: using multinomial logistic regression, to estimate differential associations of PRS across categories of cases and controls. Settings & Participants 4399 BDcases, mean [sd] age-at-interview 46[12] years, of which 2966 were woman (67%) from the BD Research Network (BDRN) were included in the final analyses, with data for 4976 schizophrenia cases and 9012 controls from the Type-1 diabetes genetics consortium and Generation Scotland included for comparison. Exposure Standardised PRS, calculated using alleles with an association p-value threshold < 0.05 in the second Psychiatric Genomics Consortium genome-wide association study of schizophrenia, adjusted for the first 10 population principal components and genotyping-platform. Main outcome measure Multinomial logit models estimated PRS associations with BD stratified by (1) Research Diagnostic Criteria (RDC) BD subtypes (2) Lifetime occurrence of psychosis.(3) Lifetime mood-incongruent psychotic features and (4) ordinal logistic regression examined PRS associations across levels of mood-incongruence. Ratings were derived from the Schedule for Clinical Assessment in Neuropsychiatry interview (SCAN) and the Bipolar Affective Disorder Dimension Scale (BADDS). Results Across clinical phenotypes, there was an exposure-response gradient with the strongest PRS association for schizophrenia (RR=1.94, (95% C.1.1.86, 2.01)), then schizoaffective BD (RR=1.37, (95% C.I. 1.22, 1.54)), BD I (RR= 1.30, (95% C.I. 1.24, 1.36)) and BD II (RR=1.04, (95% C.1. 0.97, 1.11)). Within BD cases, there was an effect gradient, indexed by the nature of psychosis, with prominent mood-incongruent psychotic features having the strongest association (RR=1.46, (95% C.1.1.36, 1.57)), followed by mood-congruent psychosis (RR= 1.24, (95% C.1. 1.17, 1.33)) and lastly, BD cases with no history of psychosis (RR= 1.09, (95% C.1. 1.04, 1.15)). Conclusion We show for the first time a polygenic-risk gradient, across schizophrenia and bipolar disorder, indexed by the occurrence and level of mood-incongruent psychotic symptoms.