Antonio Frigeri
University of Bari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Frigeri.
The FASEB Journal | 2001
Antonio Frigeri; Grazia Paola Nicchia; Beatrice Nico; Fabio Quondamatteo; Rainer Herken; Luisa Roncali; Maria Svelto
We report a detailed study of AQP4 expression in the neuromuscular system of mdx mice. Immunocytochemical analysis performed by double immunostaining revealed that mdx mice manifest a progressive reduction in AQP4 at the sarcolemmal level of skeletal muscle fast fibers and that type IIB fibers are the first to manifest this reduction in AQP4 expression. No labeling was observed in the cytoplasm of muscle fibers, indicating that the reduction in sarcolemma staining is not associated with an intracellular compartmentalization of mistargeted protein. By Western blot and RT‐PCR analysis, we found that whereas the total content of AQP4 protein decreased (by 90% in adult mdx mice), mRNA levels for AQP4 remained unchanged. A similar age related reduction in AQP4 expression was found in brain astrocytic end‐feet surrounding capillaries of mdx mice. Morphometric analysis performed after immunogold electron microscopy indicated a reduction of ~85% in gold particles (32±2/μm vs. 4.7±0.61/μm). Western blot experiments conducted using membrane fractions from brain cortex revealed a strong reduction (of 70%) in AQP4 protein in adult mdx mice, and RT‐PCR experiments demonstrated that the reduction was not at transcription level. More interesting was the finding that AQP4 reduction was associated with swelling of astrocytic perivascular processes whose ultrastructural modifications are commonly indicated as an important and early event in the development of brain edema. No apparent reduction in AQP4 was found in mdx stomach and kidney. Our data provide evidence that dystrophin deficiency in mdx mice leads to disturbances in AQP4 assembly in the plasma membrane of fast skeletal muscle fibers and brain astrocytic end‐feet, suggesting that changes in the osmotic equilibrium of the neuromuscular apparatus may be involved in the pathology of muscular dystrophy.—Frigeri, A., Nicchia, G. P., Nico, B., Quondamatteo, F., Herken, R., Roncali, L., Svelto, M. Aquaporin‐4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J. 15, 90–98 (2001)
Neuroscience | 2004
Grazia Paola Nicchia; Beatrice Nico; L.M.A. Camassa; Maria Grazia Mola; N. Loh; R. Dermietzel; David C. Spray; Maria Svelto; Antonio Frigeri
Aquaporin-4 (AQP4) is the major water channel expressed in brain perivascular astrocyte processes. Although the role of AQP4 in brain edema has been extensively investigated, little information exists regarding its functional role at the blood-brain barrier (BBB). The purpose of this work is to integrate previous and recent data regarding AQP4 expression during BBB formation and depending on BBB integrity, using several experimental models. Results from studies on the chick optic tectum, a well-established model of BBB development, and the effect of lipopolysaccharide on the BBB integrity and on perivascular AQP4 expression have been analyzed and discussed. Moreover, data on the BBB structure and AQP4 expression in murine models of Duchenne muscular dystrophy are reviewed. In particular, published results obtained from mdx(3cv) mice have been analyzed together with new data obtained from mdx mice in which all the dystrophin isoforms including DP71 are strongly reduced. Finally, the role of the endothelial component on AQP4 cellular expression and distribution has been investigated using rat primary astrocytes and brain capillary endothelial cell co-cultures as an in vitro model of BBB.
Glia | 2003
Beatrice Nico; Antonio Frigeri; Grazia Paola Nicchia; Patrizia Corsi; Domenico Ribatti; Fabio Quondamatteo; Rainer Herken; Francesco Girolamo; Andrea Marzullo; Maria Svelto; Luisa Roncali
In this study, we investigated the involvement of the blood‐brain barrier (BBB) in the brain of the dystrophin‐deficient mdx mouse, an experimental model of Duchenne muscular dystrophy (DMD). To this purpose, we used two tight junction markers, the Zonula occludens (ZO‐1) and claudin‐1 proteins, and a glial marker, the aquaporin‐4 (AQP4) protein, whose expression is correlated with BBB differentiation and integrity. Results showed that most of the brain microvessels in mdx mice were lined by altered endothelial cells that showed open tight junctions and were surrounded by swollen glial processes. Moreover, 18% of the perivascular glial endfeet contained electron‐dense cellular debris and were enveloped by degenerating microvessels. Western blot showed a 60% reduction in the ZO‐1 protein content in mdx mice and a similar reduction in AQP4 content compared with the control brain. ZO‐1 immunocytochemistry and claudin‐1 immunofluorescence in mdx mice revealed a diffuse staining of microvessels as compared with the control ones, which displayed a banded staining pattern. ZO‐1 immunogold electron microscopy showed unlabeled tight junctions and the presence of gold particles scattered in the endothelial cytoplasm in the mdx mice, whereas ZO‐1 gold particles were exclusively located at the endothelial tight junctions in the controls. Dual immunofluorescence staining of α‐actin and ZO‐1 revealed colocalization of these proteins. As in ZO‐1 staining, the pattern of immunolabeling with anti–α‐actin antibody was diffuse in the mdx vessels and pointed or banded in the controls. α‐actin immunogold electron microscopy showed gold particles in the cytoplasms of endothelial cells and pericytes in the mdx mice, whereas α‐actin gold particles were revealed on the endothelial tight junctions and the cytoskeletal microfilaments of pericytes in the controls. Perivascular glial processes of the mdx mice appeared faintly stained by anti‐AQP4 antibody, while in the controls a strong AQP4 labeling of glial processes was detected at light and electron microscope level. The vascular permeability of the mdx brain microvessels was investigated by means of the horseradish peroxidase (HRP). After HRP injection, extensive perivascular areas of marker escape were observed in mdx mice, whereas HRP was exclusively intravascularly localized in the controls. Inflammatory cells, CD4‐, CD8‐, CD20‐, and CD68‐positive cells, were not revealed in the perivascular stroma of the mdx brain. These findings indicate that dystrophin deficiency in the mdx brain leads to severe injury of the endothelial and glial cells with disturbance in α‐actin cytoskeleton, ZO‐1, claudin‐1, and AQP4 assembly, as well as BBB breakdown. The BBB alterations suggest that changes in vascular permeability are involved in the pathogenesis of the neurological dysfunction associated with DMD. GLIA 42:235–251, 2003.
Glia | 2009
Grazia Paola Nicchia; Mauro Mastrototaro; Andrea Rossi; Francesco Pisani; Carla Tortorella; Maddalena Ruggieri; Anna Lia; Maria Trojano; Antonio Frigeri; Maria Svelto
Neuromyelitis optica (NMO) is an inflammatory autoimmune demyelinating disease of the central nervous system (CNS) which in autoantibodies produced by patients with NMO (NMO‐IgG) recognize a glial water channel protein, Aquaporin‐4 (AQP4) expressed as two major isoforms, M1‐ and M23‐AQP4, in which the plasma membrane form orthogonal arrays of particles (OAPs). AQP4‐M23 is the OAP‐forming isoform, whereas AQP4‐M1 alone is unable to form OAPs. The function of AQP4 organization into OAPs in normal physiology is unknown; however, alteration in OAP assemblies is reported for several CNS pathological states. In this study, we demonstrate that in the CNS, NMO‐IgG is able to pull down both M1‐ and M23‐AQP4 but experiments performed using cells selectively transfected with M1‐ or M23‐AQP4 and native tissues show NMO‐IgG epitope to be intrinsic in AQP4 assemblies into OAPs. Other OAP‐forming water‐channel proteins, such as the lens Aquaporin‐0 and the insect Aquaporin‐cic, were not recognized by NMO‐IgG, indicating an epitope characteristic of AQP4‐OAPs. Finally, water transport measurements show that NMO‐IgG treatment does not significantly affect AQP4 function. In conclusion, our results suggest for the first time that OAP assemblies are required for NMO‐IgG to recognize AQP4.
American Journal of Pathology | 2005
Annamaria De Luca; Beatrice Nico; Antonella Liantonio; Maria Paola Didonna; Bodvael Fraysse; Sabata Pierno; Rosa Burdi; Domenica Mangieri; Jean François Rolland; Claudia Camerino; Alberta Zallone; Paolo Confalonieri; Francesca Andreetta; Elisa Arnoldi; Isabelle Courdier-Fruh; Josef P. Magyar; Antonio Frigeri; Michela Pisoni; Maria Svelto; Diana Conte Camerino
Chronic inflammation is a secondary reaction of Duchenne muscular dystrophy and may contribute to disease progression. To examine whether immunosuppressant therapies could benefit dystrophic patients, we analyzed the effects of cyclosporine A (CsA) on a dystrophic mouse model. Mdx mice were treated with 10 mg/kg of CsA for 4 to 8 weeks throughout a period of exercise on treadmill, a protocol that worsens the dystrophic condition. The CsA treatment fully prevented the 60% drop of forelimb strength induced by exercise. A significant amelioration (P < 0.05) was observed in histological profile of CsA-treated gastrocnemius muscle with reductions of nonmuscle area (20%), centronucleated fibers (12%), and degenerating area (50%) compared to untreated exercised mdx mice. Consequently, the percentage of normal fibers increased from 26 to 35% in CsA-treated mice. Decreases in creatine kinase and markers of fibrosis were also observed. By electrophysiological recordings ex vivo, we found that CsA counteracted the decrease in chloride conductance (gCl), a functional index of degeneration in diaphragm and extensor digitorum longus muscle fibers. However, electrophysiology and fura-2 calcium imaging did not show any amelioration of calcium homeostasis in extensor digitorum longus muscle fibers. No significant effect was observed on utrophin levels in diaphragm muscle. Our data show that the CsA treatment significantly normalized many functional, histological, and biochemical endpoints by acting on events that are independent or downstream of calcium homeostasis. The beneficial effect of CsA may involve different targets, reinforcing the usefulness of immunosuppressant drugs in muscular dystrophy.
The FASEB Journal | 2003
Grazia Paola Nicchia; Antonio Frigeri; Grazia Maria Liuzzi; Maria Svelto
Recent studies indicate a key role of aquaporin (AQP) 4 in astrocyte swelling and brain edema and suggest that AQP4 inhibition may be a new therapeutic way for reducing cerebral water accumulation. To understand the physiological role of AQP4‐mediated astroglial swelling, we used 21‐nucleotide small interfering RNA duplexes (siRNA) to specifically suppress AQP4 expression in astrocyte primary cultures. Semiquantitative RT‐PCR experiments and Western blot analysis showed that AQP4 silencing determined a progressive and parallel reduction in AQP4 mRNA and protein. AQP4 gene suppression determined the appearance of a new morphological cell phenotype associated with a strong reduction in cell growth. Water transport measurements showed that the rate of shrinkage of AQP4 knockdown astrocytes was one‐half of that of controls. Finally, cDNA microarray analysis revealed that the gene expression pattern perturbed by AQP4 gene silencing concerned ischemia‐related genes, such as GLUT1 and hexokinase. Taken together, these results indicate that 1) AQP4 seems to be the major factor responsible for the fast water transport of cultured astrocytes; 2) as in skeletal muscle, AQP4 is a protein involved in cell plasticity; 3) AQP4 alteration may be a primary factor in ischemia‐induced cerebral edema; and 4) RNA interference could be a new potent tool for studying AQP pathophysiology in those organs and tissues where they are expressed.
Journal of Histochemistry and Cytochemistry | 2001
Grazia Paola Nicchia; Antonio Frigeri; Beatrice Nico; Domenico Ribatti; Maria Svelto
Aquaporin-9 (AQP9) is a water channel membrane protein also permeable to small solutes such as urea, glycerol, and 5-fluorouracil, a chemotherapeutic agent. With the aim of understanding the pathophysiological role of AQP9, we performed an extensive analysis by Western blotting, RT-PCR, and immunolocalization in rat tissues. Western blotting analysis revealed a major band of approximately 32 kD in testis, liver, and brain. Immunofluorescence showed strong expression of AQP9 in the plasma membrane of testis Leydig cells. In liver, AQP9 expression was found to be sex-linked. Male rats had higher levels of AQP9 than female in terms of both protein and mRNA. Moreover, in female livers the expression of AQP9 was mostly confined to perivascular hepatocytes, whereas males showed a more homogeneous hepatocyte staining. No differences in AQP9 expression level related to the age or to protein content of the diet were found, indicating that differences in the liver may be gender-dependent. In the brain, AQP9 expression was found in tanycytes mainly localized in the areas lacking a blood-brain barrier (BBB), such as the circumventricular organs (CVOs) of the third ventricles, the subfornical organ, the hypothalamic regions, and the glial processes of the pineal gland. AQP9 expression in the osmosensitive region of the brain suggests a role in the mechanism of central osmoreception. All these findings show a unique tissue distribution of AQP9 compared to the other known aquaporins.
British Journal of Haematology | 2001
Angelo Vacca; Antonio Frigeri; Domenico Ribatti; Grazia Paola Nicchia; Beatrice Nico; Roberto Ria; Maria Svelto; Franco Dammacco
The erythrocyte water channel aquaporin 1 (AQP1) is expressed in multiple absorptive and secretory epithelia including the capillary endothelia. Immunoblot analysis showed that bone marrow biopsies of patients with active multiple myeloma (MM) display significantly higher levels of AQP1 than those from patients with non‐active MM, whose values are higher, but to a lesser extent, than those of patients with monoclonal gammopathies of undetermined significance (MGUS). Values of MGUS overlapped those of patients with anaemia as a result of iron or vitamin B12 deficiencies (called ‘benign anaemias’). Immunohistochemistry and computerized image analysis of AQP1 highlighted bone marrow microvessels whose area per microscopic field was significantly greater in patients with active MM, and always larger than and closely correlated with the microvessel area when assessed with factor VIII‐related antigen/von Willebrands factor (FVIII–VWF). The intensity of AQP1 expression by microvessels evaluated using image analysis was significantly greater in active than non‐active MM and in the latter over MGUS or benign anaemias. It is suggested that, among plasma cell tumours, AQP1 expression is preferentially associated with microvessels of MM and that the highest degree of expression occurs in active MM in step with enhanced angiogenesis, in which AQP1 recognizes more immature neovessels than FVIII–VWF. It may, perhaps, favour angiogenesis in a positive loop and, hence, MM progression, and thus be applied for therapeutic vascular targeting.
Journal of Biological Chemistry | 1996
Giovanna Valenti; Antonio Frigeri; Pierre Ronco; Cinzia D'Ettorre; Maria Svelto
In this study, we describe the establishment of a stably transfected epithelial cell line with the cDNA for the rat aquaporin 2 (AQP2). To this end, we used a human cell line (HCD) derived from the cortical collecting duct and having characteristics of principal cells (Prié, D., Friedlander, G., Coureau, C., Vandewalle, A., Cassigena, R., and Ronco, P. M. (1995) Kidney Int. 47, 1310-1318). The HCD cells were first screened for the constitutive expression of AQPs. By Western blot analysis, we found a low expression of immunoreactive AQP2 and AQP4 proteins. In contrast, transfected cells (clone CD8) probed with AQP2 antiserum expressed an intense 29-kDa protein on immunoblot in addition to a broad band between 35-45 kDa corresponding to the glycosylated form of the protein, indicating that full maturity of the protein is attained in transfected cells. Immunofluorescence demonstrated that AQP2 was located in intracellular vesicles. After vasopressin stimulation, the staining redistributed from an intracellular site to the apical pole of the cells, an effect similar to that described on collecting duct principal cells in vivo (Sabolic, I., Katsura, T., Verbavatz, J. M., and Brown, D. (1995) J. Membr. Biol. 143, 165-175) and in perfused tubules (Nielsen, S., Chou, C. L., Marples, D., Christensen, E. I., Kishore, B. K., and Knepper, M. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1013-1017). The redistribution of AQP2 in CD8 cells was accompanied by an approximately 6-fold increase in osmotic water permeability coefficient (Pf), which was inhibited by 0.3 mM HgCl2. These data indicate that functional vasopressin-sensitive water channels are expressed in transfected cells. The stably transfected cells represent a suitable model to unravel by direct experimental approach the intracellular signals involved in the translocation of AQP2 to the apical plasma membrane in the presence of vasopressin.
Seminars in Oncology | 2001
Angelo Vacca; Domenico Ribatti; Aldo M. Roccaro; Antonio Frigeri; Franco Dammacco
Factor VIII-related antigen (FVIII-RA)-positive microvessel areas were measured by both immunohistochemistry and computerized image analysis in patients with active multiple myeloma (MM), nonactive MM, and monoclonal gammopathies of undetermined significance (MGUS). A five-to sixfold larger area was found in patients with active MM compared to the other two groups. Aquaporin 1 (AQP1)-positive microvessel areas, measured with the same techniques on adjacent tissue sections, were also increased in active MM, and tended to be larger than and closely correlated with the FVIII-RA areas. Numerous mast cells were found in the bone marrow of active MM patients, and counts were strictly correlated with the microvessel density. The conditioned medium (CM) of bone marrow plasma cells from active MM patients stimulated endothelial cell proliferation and chemotaxis, monocyte chemotaxis, and angiogenesis in vivo (assessed by the chick embryo chorioallantoic membrane [CAM] system) more strongly and frequently than the CM of patients with nonactive MM and MGUS. Immunoassay of plasma cell lysates gave significantly higher levels of fibroblast growth factor-2 (FGF-2) in patients with active MM than in the other two groups, and a neutralizing anti-FGF-2 antibody inhibited by 46% to 68% the biological activity exerted by the CM in vitro and in the CAM. In situ hybridization of bone marrow plasma cells and zymography of CM showed that patients with active MM express higher levels of matrix metalloproteinase-2 (MMP-2) mRNA and protein than those with nonactive MM and MGUS, whereas MMP-9 expression and secretion overlapped in all groups. Overall data indicate that patients with active MM represent the vascular phase of plasma cell tumors that is induced, at least partly, through FGF-2 and MMP-2. Mast cells possibly contribute to the vascular phase via angiogenic factors in their secretory granules. Both angiogenesis and MMP-2 secretion can account for intramedullary and extramedullary spreading of plasma cells in patients with active MM.