Antonio J. Jara
University of Applied Sciences Western Switzerland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio J. Jara.
ubiquitous computing | 2011
Antonio J. Jara; Miguel A. Zamora; Antonio F. Gómez Skarmeta
Diabetes therapy management in AAL environments, such as old people and diabetes patients homes, is a very difficult task since many factors affect a patient’s blood sugar levels. Factors such as illness, treatments, physical and psychological stress, physical activity, drugs, intravenous fluids and change in the meal plan cause unpredictable and potentially dangerous fluctuations in blood sugar levels. Right now, operations related to dosage are based on insulin infusion protocol boards, which are provided by physicians to the patients. These boards are not considering very influential factors such as glycemic index from the diet, consequently patients need to estimate the dosage leading to dose error, which culminates in hyperglycemia and hypoglycemia episode. Therefore, right insulin infusion calculation needs to be supported by the next generation of personal-care devices. For this reason, a personal device has been developed to assist and consider more factors in the insulin therapy dosage calculation. The proposed solution is based on Internet of things in order to, on the one hand, support a patient’s profile management architecture based on personal RFID cards and, on the other hand, provide global connectivity between the developed patient’s personal device based on 6LoWPAN, nurses/physicians desktop application to manage personal health cards, glycemic index information system, and patient’s web portal. This solution has been evaluated by a multidisciplinary group formed by patients, physicians, and nurses.
the internet of things | 2014
Dhananjay Singh; Gaurav Tripathi; Antonio J. Jara
Internet-of-Things (IoT) is the convergence of Internet with RFID, Sensor and smart objects. IoT can be defined as “things belonging to the Internet” to supply and access all of real-world information. Billions of devices are expected to be associated into the system and that shall require huge distribution of networks as well as the process of transforming raw data into meaningful inferences. IoT is the biggest promise of the technology today, but still lacking a novel mechanism, which can be perceived through the lenses of Internet, things and semantic vision. This paper presents a novel architecture model for IoT with the help of Semantic Fusion Model (SFM). This architecture introduces the use of Smart Semantic framework to encapsulate the processed information from sensor networks. The smart embedded system is having semantic logic and semantic value based Information to make the system an intelligent system. This paper presents a discussion on Internet oriented applications, services, visual aspect and challenges for Internet of things using RFID, 6lowpan and sensor networks.
IEEE Access | 2016
Yunchuan Sun; Houbing Song; Antonio J. Jara; Rongfang Bie
This paper promotes the concept of smart and connected communities SCC, which is evolving from the concept of smart cities. SCC are envisioned to address synergistically the needs of remembering the past (preservation and revitalization), the needs of living in the present (livability), and the needs of planning for the future (attainability). Therefore, the vision of SCC is to improve livability, preservation, revitalization, and attainability of a community. The goal of building SCC for a community is to live in the present, plan for the future, and remember the past. We argue that Internet of Things (IoT) has the potential to provide a ubiquitous network of connected devices and smart sensors for SCC, and big data analytics has the potential to enable the move from IoT to real-time control desired for SCC. We highlight mobile crowdsensing and cyber-physical cloud computing as two most important IoT technologies in promoting SCC. As a case study, we present TreSight, which integrates IoT and big data analytics for smart tourism and sustainable cultural heritage in the city of Trento, Italy.
IEEE Journal on Selected Areas in Communications | 2013
Antonio J. Jara; Miguel A. Zamora-Izquierdo; Antonio F. Skarmeta
Communication and information access defines the basis to reach a personalized health end-to-end framework. Personalized health capability is limited to the available data from the patient. The data is usually dynamic and incomplete. Therefore, it presents a critical issue for mining, analysis and trending. For that reason, this work presents an interconnection framework for mobile Health (mHealth) based on the Internet of Things. It makes continuous and remote vital sign monitoring feasible and introduces technological innovations for empowering health monitors and patient devices with Internet capabilities. It also allows patient monitoring and supervision by remote centers, and personal platforms such as tablets. In terms of hardware it offers a gateway and a personal clinical device used for the wireless transmission of continuous vital signs through 6LoWPAN, and patient identification through RFID. In terms of software, this interconnection framework presents a novel protocol, called YOAPY, for an efficient, secure, and scalable integration of the sensors deployed in the patients personal environment. This paper presents the architecture and evaluates its capability to provide continuous monitoring, ubiquitous connectivity, extended device integration, reliability, and security and privacy support. The proposed interconnection framework and the proposed protocol for the sensors have been exhaustively evaluated in the framework of the AIRE project, which is focused on patients with breathing problem. This evaluates for the proposed protocol the data aggregation mechanism level, Round-Trip delay Time, impact of the distance, and the impact of the security. It has been concluded that secure continuous monitoring is feasible with the use of the proposed {YOAPY}} aggregation mechanisms and the capabilities from the proposed interconnection framework.
advanced information networking and applications | 2013
Miguel Castro; Antonio J. Jara; Antonio F. Gómez Skarmeta
Smart cities play an increasingly important role for the sustainable economic development of a determined area. Smart cities are considered a key element for generating wealth, knowledge and diversity, both economically and socially. A Smart City is the engine to reach the sustainability of its infrastructure and facilitate the sustainable development of its industry, buildings and citizens. The first goal to reach that sustainability is reduce the energy consumption and the levels of greenhouse gases (GHG). For that purpose, it is required scalability, extensibility and integration of new resources in order to reach a higher awareness about the energy consumption, distribution and generation, which allows a suitable modeling which can enable new countermeasure and action plans to mitigate the current excessive power consumption effects. Smart Cities should offer efficient support for global communications and access to the services and information. It is required to enable a homogenous and seamless machine to machine (M2M) communication in the different solutions and use cases. This work presents how to reach an interoperable Smart Lighting solution over the emerging M2M protocols such as CoAP built over REST architecture. This follows up the guidelines defined by the IP for Smart Objects Alliance (IPSO Alliance) in order to implement and interoperable semantic level for the street lighting, and describes the integration of the communications and logic over the existing street lighting infrastructure.
ubiquitous computing | 2014
Antonio J. Jara; Pablo Lopez; David Fernandez; Jose F. Castillo; Miguel A. Zamora; Antonio F. Skarmeta
The application of Internet-enabled devices in the real world for the development of Smart Cities, environmental monitoring, bus tracking, and parking requires scalability, extensibility, and integration of emerging resources to reach a suitable ecosystem for data acquisition and interaction with citizens. Internet of things needs to offer efficient support for global communications and access to services and information. It needs to enable homogeneous and seamless machine-to-machine communication for different solutions and applications. This work presents an homogeneous and suitable mechanism for global resource discovery, device access for deployed smart objects in different scenarios, and sensors and devices from end users (participative sensing). The integration of legacy and sensors already available from smart buildings and smart objects is presented. For this purpose, a resolution infrastructure called “digcovery” is defined for maximizing efficiency and sustainability of deployments. Digcovery architecture offers the framework to allow users to register/include their own sensors into a common infrastructure and access/discover the available resources through mobile digcovery. Mobile digcovery exploits the context-awareness, geo-location, and identification technologies available in mobile platforms such as smartphones to discover, interact, and access the resources through its ElasticSearch engine.
Sensors | 2015
Leandro Marín; Marcin Piotr Pawlowski; Antonio J. Jara
The Internet of Things is integrating information systems, places, users and billions of constrained devices into one global network. This network requires secure and private means of communications. The building blocks of the Internet of Things are devices manufactured by various producers and are designed to fulfil different needs. There would be no common hardware platform that could be applied in every scenario. In such a heterogeneous environment, there is a strong need for the optimization of interoperable security. We present optimized elliptic curve Cryptography algorithms that address the security issues in the heterogeneous IoT networks. We have combined cryptographic algorithms for the NXP/Jennic 5148- and MSP430-based IoT devices and used them to created novel key negotiation protocol.
IEEE Journal on Selected Areas in Communications | 2015
José L. Hernández-Ramos; Marcin Piotr Pawlowski; Antonio J. Jara; Antonio F. Skarmeta; Latif Ladid
The Internet of Things (IoT) represents the current technology revolution that is intended to transform the current environment into a more pervasive and ubiquitous world. In this emerging ecosystem, the application of standard security technologies has to cope with the inherent nature of constrained physical devices, which are seamlessly integrated into the Internet infrastructure. This work proposes a set of lightweight authentication and authorization mechanisms in order to support smart objects during their life cycle. Furthermore, such mechanisms are framed within a proposed security framework, which is compliant with the Architectural Reference Model, recently presented by the EU FP7 IoT-A project. The resulting architecture is intended to provide a holistic security approach to be leveraged in the design of novel and lightweight security protocols for IoT constrained environments.
network based information systems | 2012
Antonio J. Jara; Miguel A. Zamora; Antonio F. Gómez Skarmeta
The Internet of Things IoT requires scalability, extensibility and a transparent integration of multi-technology in order to reach an efficient support for global communications, discovery and look-up, as well as access to services and information. To achieve these goals, it is necessary to enable a homogenous and seamless machine-to-machine M2M communication mechanism allowing global access to devices, sensors and smart objects. In this respect, the proposed answer to these technological requirements is called Glowbal IP, which is based on a homogeneous access to the devices/sensors offered by the IPv6 addressing and core network. Glowbal IPs main advantages with regard to 6LoWPAN/IPv6 are not only that it presents a low overhead to reach a higher performance on a regular basis, but also that it determines the session and identifies global access by means of a session layer defined over the application layer. Technologies without any native support for IP are thereby adaptable to IP e.g. IEEE 802.15.4 and Bluetooth Low Energy. This extension towards the IPv6 network opens access to the features and methods of the devices through a homogenous access based on WebServices e.g. RESTFul/CoAP. In addition to this, Glowbal IP offers global interoperability among the different devices, and interoperability with external servers and users applications. All in all, it allows the storage of information related to the devices in the network through the extension of the Domain Name System DNS from the IPv6 core network, by adding the Service Directory extension DNS-SD to store information about the sensors, their properties and functionality. A step forward in network-based information systems is thereby reached, allowing a homogenous discovery, and access to the devices from the IoT. Thus, the IoT capabilities are exploited by allowing an easier and more transparent integration of the end users applications with sensors for the future evaluations and use cases.
International Journal of Web and Grid Services | 2014
Antonio J. Jara; Alex C. Olivieri; Yann Bocchi; Markus Jung; Wolfgang Kastner; Antonio F. Skarmeta
The Internet of Things IoT is being applied for stovepipe solutions, since it presents a semantic description limited to a specific domain. IoT needs to be pushed towards a more open, interoperable and collaborative IoT. The first step has been the Web of Things WoT. WoT evolves the IoT with a common stack based on web services. But, even when a homogeneous access is reached through web protocols, a common understanding is not yet acquired. For this purpose, the Semantic Web of Things SWoT is proposed for the integration of the semantic web on the WoT. This work analyses the SWoT, presenting its different levels to offer an IoT convergence. Specifically, we analyse the trends for capillary networks and for cellular networks with standards such as IPSO, ZigBee, OMA, and the oneM2M initiative. This work also analyses the impact of the semantic-annotations/metadata in the performance of the resources.