Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio J Jiménez is active.

Publication


Featured researches published by Antonio J Jiménez.


Cell and Tissue Research | 1996

The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina

Antonio J Jiménez; José M. García-Fernández; Begoña González; Russel G. Foster

Abstract.Photoreceptor degeneration in the retina of the rd/rd (retinal degeneration) mice has been studied using immunocytochemistry with antisera against cone- and rod-opsin. The rd/rd mice exhibited different regional specific rates of degeneration for rods and cones. As early as postnatal day 25, cells labelled with the rod-opsin and cone-opsin antisera disappeared preferently from the central retina. Whereas in the inferior half of the retina, degeneration subsequently proceeded towards the periphery, this did not occur in the dorsal hemisphere. By the age of 100 days, many cells immunoreactive for the cone-opsin antiserum and a few cells immunoreactive for the rod-opsin antiserum were located in an area of the dorsal retina. The ventral retina lacked labelled elements at this age. Finally, rd/rd mice at one year or 600 days of age contained a similar number of cone-opsin immunopositive cells (approximately 2000–2800 cells), occupying almost the same area in the retina as that found at 100 days of age. A photoreceptor candidate for the entrainment of non-visual photoreception probably remains in the cone population in aged rd/rd mice.


Acta Neuropathologica | 2012

Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus

Raquel Sanchez-Varo; Laura Trujillo-Estrada; Elisabeth Sanchez-Mejias; Manuel Torres; David Baglietto-Vargas; Ines Moreno-Gonzalez; Vanessa De Castro; Sebastian Jimenez; Diego Ruano; Marisa Vizuete; José Carlos Dávila; Jose Manuel Garcia-Verdugo; Antonio J Jiménez; Javier Vitorica; Antonia Gutierrez

Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer’s disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1M146L/APP751SL mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin–cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages.


Microscopy Research and Technique | 2001

SUBCOMMISSURAL ORGAN, CEREBROSPINAL FLUID CIRCULATION, AND HYDROCEPHALUS

José Manuel Pérez-Fígares; Antonio J Jiménez; Esteban M. Rodríguez

Under normal physiological conditions the cerebrospinal fluid (CSF) is secreted continuously, although this secretion undergoes circadian variations. Mechanisms operating at the vascular side of the choroidal cells involve a sympathetic and a cholinergic innervation, with the former inhibiting and the latter stimulating CSF secretion. There are also regulatory mechanisms operating at the ventricular side of the choroidal cells, where receptors for monoamines such as dopamine, serotonin, and melatonin, and for neuropeptides such as vasopressin, atrial natriuretic hormone, and angiotensin II, have been identified. These compounds, that are normally present in the CSF, participate in the regulation of CSF secretion. Although the mechanisms responsible for the CSF circulation are not fully understood, several factors are known to play a role. There is evidence that the subcommissural organ (SCO)–Reissners fiber (RF) complex is one of the factors involved in the CSF circulation. In mammals, the predominant route of escape of CSF into blood is through the arachnoid villi. In lower vertebrates, the dilatation of the distal end of the central canal, known as terminal ventricle or ampulla caudalis, represents the main site of CSF escape into blood. Both the function and the ultrastructural arrangement of the ampulla caudalis suggest that it may be the ancestor structure of the mammalian arachnoid villi. RF‐glycoproteins reaching the ampulla caudalis might play a role in the formation and maintenance of the route communicating the CSF and blood compartments. The SCO‐RF complex may participate, under physiological conditions, in the circulation and reabsorption of CSF. Under pathological conditions, the SCO appears to be involved in the pathogeneses of congenital hydrocephalus. Changes in the SCO have been described in all species developing congenital hydrocephalus. In these reports, the important question whether the changes occurring in the SCO precede hydrocephalus, or are a consequence of the hydrocephalic state, has not been clarified. Recently, evidence has been obtained indicating that a primary defect of the SCO‐RF complex may lead to hydrocephalus. Thus, a primary and selective immunoneutralization of the SCO‐RF complex during the fetal and early postnatal life leads to absence of RF, aqueductal stenosis, increased CSF concentration of monoamines, and a moderate but sustained hydrocephalus. Microsc. Res. Tech. 52:591–607, 2001.


Cell and Tissue Research | 1997

An immunocytochemical study of encephalic photoreceptors in three species of lamprey

José M. García-Fernández; Antonio J Jiménez; B. González; M. A. Pombal; Russell G. Foster

Abstract.The extraretinal and extrapineal photoreceptors of three species of adult lamprey, sea lamprey (Petromyzon marinus), river lamprey (Lampetra fluviatilis) and silver lamprey (Ichthyomyzon unicuspis) were studied using antibodies raised against photoreceptor rod and cone opsins, α-transducin and arrestin. In all three species cells in the pineal organ (P), parapineal organ (PP), nucleus preopticus (T5), nucleus commissurae postopticae (D8), nucleus ventralis hypothalami (D10) and nucleus dorsalis hypothalami (D11) were labelled by one or more of the anti-opsin antibodies. In addition, anti-arrestin antibodies labelled cells within the D8 and anti-α-transducin antibodies labelled cells within the pineal complex and hypothalamus (primarily D8 and/or D10). A more variable and species dependent pattern of opsin, arrestin and α-transducin labelling was observed within the nucleus commissurae postinfundibularis (D12) in an area comprising the nucleus dorsalis thalami pars subhabenularis (D4sh) and nucleus dorsalis thalami pars caudalis/nucleus commissurae posterioris (D4c/M1), and in the proximity of the second Müller cells in the ventrocaudal diencephalon (2.MZ/M6). The majority of the neurons labelled within the pineal and parapineal organs and hypothalamus were periventricular with clear cerebrospinal fluid contacts (CSF-contacting neurons). Labelled neurons in the epithalamic (D4sh and D4c/M1) and caudal diencephalon (2.MZ/M6) had no obvious ventricular contacts. We speculate that the ”primitive” vertebrate brain of lampreys represents an ancestral condition in which different populations of encephalic photoreceptors are associated with different behavioural and physiological responses. Image-forming vision needs an eye, but irradiance detection does not require a specialised organ. Rather the photoreceptors could be closely associated with their effector systems within the brain.


Applied and Environmental Microbiology | 2009

Molecular and Biochemical Characterization of a β-Fructofuranosidase from Xanthophyllomyces dendrorhous

Dolores Linde; Isabel Macias; Lucia Fernandez-Arrojo; Francisco J. Plou; Antonio J Jiménez; María Fernández-Lobato

ABSTRACT An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.0 to 6.5, and its thermophilicity (with maximum activity at 65 to 70°C) and thermostability (with a T50 in the range 66 to 71°C) is higher than that exhibited by most yeast invertases. The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as sucrose, 1-kestose, or nystose, although its catalytic efficiency, defined by the kcat/Km ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. dendrorhous produces neokestose as the main transglycosylation product, a potentially novel bifidogenic trisaccharide. Using a 41% (wt/vol) sucrose solution, the maximum fructooligosaccharide concentration reached was 65.9 g liter−1. In addition, we isolated and sequenced the X. dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative mature polypeptide of 595 amino acids and that it shares significant identity with other fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 mutation of Saccharomyces cerevisiae and, finally, a structural model of the new enzyme based on the homologous invertase from Arabidopsis thaliana has also been obtained.


International Archives of Allergy and Immunology | 1994

Sensitization to Sunflower Pollen: Only an Occupational Allergy?

Antonio J Jiménez; Carmen Moreno; Jorge Martínez; Alberto Martínez; Borja Bartolomé; Francisco Guerra; Ricardo Palacios

Sunflower (Helianthus annuus) pollen sensitization has been reported as an occupational allergy. In this report, the sensitization of the general population living in sunflower-growing areas to Helianthus pollen was studied. Both RAST results in 32 adults with summer symptoms previously diagnosed as allergic to Artemisia pollen, and cross-reactivity studies between H. annuus and other Compositae suggested that H. annuus pollen was the main allergen involved in the hypersensitivity reaction of those patients. Good correlation was found between RAST and SPT to Helianthus and between RAST and conjunctival provocation test to Helianthus. Bronchial challenge tests performed on 8 of the 32 patients confirmed the clinical implication of Helianthus pollen in suspected subjects. Five workers, handling sunflower pollen, who suffered from related symptoms were subjected to the same study, showing lesser wheal areas and lesser specific IgE levels than a non-worker group. Thirteen patients with RAST values > or = class 2 showed 2 IgE-binding fractions at 34.0 and 42.8 kD in 65% of sera and 3 IgE-binding fractions at pI 4.9, 9.6 and 10.2 in 54% of sera. By means of micropreparative high-resolution chromatography, it was possible to purify a 34-kD major allergen. Analysis performed by RAST inhibition with sera from atopic patients and ELISA inhibition with experimental anti-Helianthus rabbit sera demonstrated a cross-reactivity between Helianthus and other Compositae, but low affinity of specific anti-Helianthus antibodies for heterologous antigens. Taking into account the above-mentioned data, and the high prevalence of Helianthus pollen in the atmosphere during harvesting (in spite of its entomophilous character), Helianthus pollen should be considered as an allergenic source to be investigated in the general population living in sunflower-growing regions suffering from seasonal summer allergy.


Journal of Neuropathology and Experimental Neurology | 1998

Spontaneous congenital hydrocephalus in the mutant mouse hyh. Changes in the ventricular system and the subcommissural organ

J. M. Pérez-Fígares; Antonio J Jiménez; Margarita Pérez-Martín; P. Fernández-Llebrez; Manuel Cifuentes; Riera P; Sara Rodríguez; E. M. Rodríguez

The subcommissural organ is an ependymal gland located at the entrance of the cerebral aqueduct. It secretes glycoproteins into the cerebrospinal fluid, where they aggregate to form Reissners fiber. This fiber grows along the aqueduct, fourth ventricle, and central canal. There is evidence that the subcommissural organ is involved in the pathogenesis of congenital hydrocephalus. This organ was investigated in the mutant mouse hyh developing a congenital hydrocephalus. The central nervous system of normal and hydrocephalic hyh mice, 1 to 40 days old, was investigated using antibodies recognizing the subcommissural organ secretory glycoproteins, and by transmission and scanning electron microscopy. At birth, the affected mice displayed open communications between all ventricles, absence of a central canal in the spinal cord, ependymal denudation of the ventricles, stenosis of the rostral end of the aqueduct, and hydrocephalus of the lateral and third ventricles and of the caudal end of the aqueduct. Around the 5th postnatal day, the communication between the caudal aqueduct and fourth ventricle sealed, and hydrocephalus became severe. It is postulated that the hyh mice carry a genetic defect affecting the ependymal cell lineage. The subcommissural organ showed signs of increased secretory activity; it released to the stenosed aqueduct a material that aggregated, but it did not form a Reissners fiber. A large area of the third ventricular wall differentiated into a secretory ependyma synthesizing a material similar to that secreted by the subcommissural organ. It is concluded that the subcommissural organ changes during hydrocephalus; whether these changes preceed hydrocephalus needs to be investigated.


Neuroscience Letters | 1995

The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization.

José M. García-Fernández; Antonio J Jiménez; Russell G. Foster

Rod- and cone-opsin specific antibodies were used in an attempt to immunolabel remaining photoreceptor cells in the mutant rd (retinal degeneration) mouse retina. We identified a region-specific distribution in the pattern of photoreceptor degeneration, with the dorsal retina showing markedly less photoreceptor degeneration than the ventral retina. All rod and cone immunoreactive cells disappeared in the ventral retina by 100-120 days of age. By contrast, both cone and a small number of rod immunopositive cells were identified in the dorsal retina at this time. By 200 days all rod immunoreactive cells had disappeared. At 360 days numerous cone immunoreactive cells remained within a restricted region of the dorsal retina. As rd mice show unattenuated circadian responses to light, these remaining photoreceptor cells within the dorsal retina become candidates for the regulation of circadian physiology by light.


Journal of Neuropathology and Experimental Neurology | 2007

Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice.

Patricia Páez; Luis-Federico Bátiz; Ruth Roales-Buján; Luis-Manuel Rodríguez-Pérez; Sara Rodríguez; Antonio J Jiménez; Esteban M. Rodríguez; José Manuel Pérez-Fígares

Hyh mutant mice develop long-lasting hydrocephalus and represent a good model for investigating neuropathologic events associated with hydrocephalus. The study of their brains by use of lectin binding, bromodeoxyuridine labeling, immunochemistry, and scanning electron microscopy revealed that certain events related to hydrocephalus followed a well-defined pattern. A program of neuroepithelium/ependyma denudation was initiated at embryonic day 12 and terminated at the end of the second postnatal week. After the third postnatal week the denuded areas remained permanently devoid of ependyma. In contrast, a selective group of ependymal areas resisted denudation throughout the lifespan. Ependymal denudation triggered neighboring astrocytes to proliferate. These astrocytes expressed particular glial markers and formed a superficial cell layer replacing the lost ependyma. The loss of the neuroepithelium/ependyma layer at specific regions of the ventricular walls and at specific stages of brain development would explain the fact that only certain brain structures had abnormal development. Therefore, commissural axons forming the corpus callosum and the hippocampal commissure displayed abnormalities, whereas those forming the anterior and posterior commissures did not; and the brain cortex was not homogenously affected, with the cingular and frontal cortices being the most altered regions. All of these telencephalic alterations developed at stages when hydrocephalus was not yet patent at the lateral ventricles, indicating that abnormal neural development and hydrocephalus are linked at the etiologic level, rather than the former being a consequence of the latter. All evidence collected on hydrocephalic hyh mutant mice indicates that a primary alteration in the neuroepithelium/ependyma cell lineage triggers both hydrocephalus and abnormalities in telencephalic development.


Journal of Neuropathology and Experimental Neurology | 1996

Ependymal Denudation, Aqueductal Obliteration and Hydrocephalus after a Single Injection of Neuraminidase into the Lateral Ventricle of Adult Rats

J. M. Grondona; Margarita Pérez-Martín; Manuel Cifuentes; J. Pérez; Antonio J Jiménez; J. M. Pérez-Fígares; P. Fernández-Llebrez

To investigate the role of sialic acid in the ependyma of the rat brain, we injected neuraminidase from Clostriditum perfingens into the lateral ventricle of 86 adult rats that were sacrificed at various time intervals. After administration of 10 µg neuraminidase, ciliated cuboidal ependymal cells of the lateral ventricles, third ventricle, cerebral aqueduct, and the rostral half of the fourth ventricle died and detached. The ependymal regions sealed by tight juntions such as the choroid plexus and the subcommissural organ were not affected. Debris was removed by infiltrating neutrophils and macrophagic cells. At the same time, after ependymal disappearance, the aqueduct was obliterated. In this region, mitoses were evident and cystic ependymal cells were frequent. Hydrocephalus of the lateral and third ventricles was evident 4 days after neuraminidase injection. Gliosis was restricted to the dorsal telencephalic wall of the injected lateral ventricle. It is thought that cleavage of sialic acid from ependymal surface glycoproteins or glycolipids, likely involved in cell adhesion, led to the detaching and death of the ependymal cells. Thereafter, ependymal loss, together with edema, led to fusion of the lateral walls of the cerebral aqueduct and this in turn provoked hydrocephalus of the third and lateral ventricles. This model of experimental hydrocephalus is compared with other models, in particular those of hydrocephalus after viral invasion of the cerebral ventricles.

Collaboration


Dive into the Antonio J Jiménez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Rodríguez

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Vío

Austral University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. M. Rodríguez

Austral University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge