Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio J. Monforte is active.

Publication


Featured researches published by Antonio J. Monforte.


Genetics | 2005

Mapping With a Few Plants: Using Selective Mapping for Microsatellite Saturation of the Prunus Reference Map

Werner Howad; Toshiya Yamamoto; Elisabeth Dirlewanger; Raffaele Testolin; P. Cosson; Guido Cipriani; Antonio J. Monforte; Laura L. Georgi; A. G. Abbott; Pere Arús

The concept of selective (or bin) mapping is used here for the first time, using as an example the Prunus reference map constructed with an almond × peach F2 population. On the basis of this map, a set of six plants that jointly defined 65 possible different genotypes for the codominant markers mapped on it was selected. Sixty-three of these joint genotypes corresponded to a single chromosomal region (a bin) of the Prunus genome, and the two remaining corresponded to two bins each. The 67 bins defined by these six plants had a 7.8-cM average length and a maximum individual length of 24.7 cM. Using a unit of analysis composed of these six plants, their F1 hybrid parent, and one of the parents of the hybrid, we mapped 264 microsatellite (or simple-sequence repeat, SSR) markers from 401 different microsatellite primer pairs. Bin mapping proved to be a fast and economic strategy that could be used for further map saturation, the addition of valuable markers (such as those based on microsatellites or ESTs), and giving a wider scope to, and a more efficient use of, reference mapping populations.


Theoretical and Applied Genetics | 2005

Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.).

María José Gonzalo; M. Oliver; Jordi Garcia-Mas; Amparo Monfort; Ramon Dolcet-Sanjuan; Nurit Katzir; Pere Arús; Antonio J. Monforte

A set of 118 simple sequence repeat (SSR) markers has been developed in melon from two different sources: genomic libraries (gSSR) and expressed sequence-tag (EST) databases (EST-SSR). Forty-nine percent of the markers showed polymorphism between the ‘Piel de Sapo’ (PS) and PI161375 melon genotypes used as parents for the mapping populations. Similar polymorphism levels were found in gSSR (51.2%) and EST-SSR (45.5%). Two populations, F2 and a set of double haploid lines (DHLs), developed from the same parent genotypes were used for map construction. Twenty-three SSRs and 79 restriction fragment length polymorphisms (RFLPs), evenly distributed through the melon genome, were used to anchor the maps of both populations. Ten cucumber SSRs, 41 gSSRs, 16 EST-SSR, three single nucleotide polymorphism (SNP) markers, and the Nsv locus were added in the DHL population. The maps developed in the F2 and DHL populations were co-linear, with similar lengths, except in linkage groups G1, G9, and G10. There was segregation distortion in a higher proportion of markers in the DHL population compared with the F2, probably caused by selection during the construction of DHLs through in vitro culture. After map merging, a composite genetic map was obtained including 327 transferable markers: 226 RFLPs, 97 SSRs, three SNPs, and the Nsv locus. The map length is 1,021 cM, distributed in 12 linkage groups, and map density is 3.11 cM/marker. SSR markers alone cover nearly 80% of the map length. This map is proposed as a basis for a framework melon map to be merged with other maps and as an anchor point for map comparison between species of the Cucurbitaceae family.


Theoretical and Applied Genetics | 2000

Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield

Antonio J. Monforte; S. D. Tanksley

Abstract The near-isogenic Line TA523, containing a 40-cM introgression at the bottom of chromosome 1 from Lycopersicon hirsutum acc. LA1777, affects several agronomically important traits. A set of recombinant lines (subNILs) derived from the original NIL TA523 were developed in order to fine-map, by substitution mapping, the genetic factors included within the original introgression. In the current experiment, TA523 showed redder, rounded, less pigmented shoulder, lower-weighted fruits and higher brix, whereas higher yield and brix*yield was observed only in the hybrid TA253×TA209 suggesting heterosis for these traits. By substitution mapping we mapped independent genetic loci affecting brix, yield and fruit shape, whereas fruit weight, shoulder pigmentation and external color mapped to a position coincident with the brix locus. Analysis of the subNILs revealed that the gene action of most of the QTLs was additive or nearly additive. The exception was for the yield QTL which was dominant (d/a=0.7), eliminating the possibility that yield increase is due to true overdominance at a single gene locus. However, no negative yield effects were detected in other regions of the introgressed segment, as would be predicted by a dominance complementation model. Therefore, epistatic interactions among genetic factors along the introgressed segment are suggested as the cause of yield heterosis. Results from this study, combined with previous experiments involving different tomato wild species, demonstrate that the base of chromosome 1 of tomato contains multiple QTLs affecting various agronomic and fruit traits and that these effects can not be attributed to the pleiotropic effects of a single locus.


Plant Physiology | 2003

Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait

Owen A. Hoekenga; Jon E. Shaff; Antonio J. Monforte; Gung Pyo Lee; Stephen H. Howell; Leon V. Kochian

Aluminum (Al) toxicity, which is caused by the solubilization of Al3+ in acid soils resulting in inhibition of root growth and nutrient/water acquisition, is a serious limitation to crop production, because up to one-half of the worlds potentially arable land is acidic. To date, however, no Al tolerance genes have yet been cloned. The physiological mechanisms of tolerance are somewhat better understood; the major documented mechanism involves the Al-activated release of Al-binding organic acids from the root tip, preventing uptake into the primary site of toxicity. In this study, a quantitative trait loci analysis of Al tolerance in Arabidopsis was conducted, which also correlated Al tolerance quantitative trait locus (QTL) with physiological mechanisms of tolerance. The analysis identified two major loci, which explain approximately 40% of the variance in Al tolerance observed among recombinant inbred lines derived from Landsberg erecta (sensitive) and Columbia (tolerant). We characterized the mechanism by which tolerance is achieved, and we found that the two QTL cosegregate with an Al-activated release of malate from Arabidopsis roots. Although only two of the QTL have been identified, malate release explains nearly all (95%) of the variation in Al tolerance in this population. Al tolerance in Landsberg erecta × Columbia is more complex genetically than physiologically, in that a number of genes underlie a single physiological mechanism involving root malate release. These findings have set the stage for the subsequent cloning of the genes responsible for the Al tolerance QTL, and a genomics-based cloning strategy and initial progress on this are also discussed.


Theoretical and Applied Genetics | 2004

Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.)

Antonio J. Monforte; M. Oliver; María José Gonzalo; José María Alvarez Alvarez; Ramon Dolcet-Sanjuan; Pere Arús

Two populations [an F2 and a set of 77 double haploid lines (DHLs)] developed from a cross between a ‘Piel de Sapo’ cultivar (PS) and the exotic Korean accession PI 161375 were used to detect QTLs involved in melon fruit quality traits: earliness (EA), fruit shape (FS), fruit weight (FW) and sugar content (SSC); and loci involved in the colour traits: external colour (ECOL) and flesh colour (FC). High variation was found, showing transgressive segregations for all traits. The highest correlation among experiments was observed for FS and the lowest for FW and SSC. Correlations among traits within experiments were, in general, not significant. QTL analysis, performed by Composite Interval Mapping, allowed the detection of nine QTLs for EA, eight for FS, six for FW and five for SSC. Major QTLs (R2>25%) were detected for all traits. QTLs for different traits were no clearly co-localised, suggesting low pleiotropic effects at QTLs. Sixty-one per cent of them were detected in two or more experiments. QTLs for FS were detected in more trials than QTLs for FW and SSC, confirming that FS is under highly hereditable polygenic control. ECOL segregated as yellow:green in both experimental populations. The genetic control of ECOL was found to be complex, probably involving more than two loci with epistatic interactions. One of these loci was mapped on linkage group 9, but the other loci could not be clearly resolved. FC segregated as white:green:orange. The locus responsible for the green FC was mapped on linkage group 1, and it was proposed to correspond to the previously described locus gf. The genetic control of orange FC was complex: two loci in linkage groups 2 and 12 were associated with orange flesh, but larger population sizes would be necessary to elucidate completely the genetic control of orange flesh in this cross. Exotic alleles from PI161375 showed beneficial effects on EA, FW and SSC, indicating the usefulness of PI 161375 as a new source of genetic variability to improve European and American cultivars.


BMC Plant Biology | 2011

A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.).

Aurora Díaz; Mohamed Fergany; Gelsomina Formisano; Peio Ziarsolo; José Blanca; Zhanjun Fei; Jack E. Staub; Juan Zalapa; Hugo Cuevas; Gayle Dace; M. Oliver; Nathalie Boissot; Catherine Dogimont; Michel Pitrat; René Hofstede; Paul van Koert; Rotem Harel-Beja; Galil Tzuri; Vitaly Portnoy; Shahar Cohen; Arthur A. Schaffer; Nurit Katzir; Yong Xu; Haiying Zhang; Nobuko Fukino; Satoru Matsumoto; Jordi Garcia-Mas; Antonio J. Monforte

BackgroundA number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS).ResultsUnder the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm.ConclusionsEven though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).


Theoretical and Applied Genetics | 1997

Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis

Antonio J. Monforte; M. J. Asíns; E. A. Carbonell

Abstract Salt tolerance was studied comparatively in three families derived from crosses between Lycopersicon esculentum Mill. and two related wild species [two accessions of Lycopersicon pimpinellifolium (Jusl.) Mill. and one accession of Lycopersicon chesmannii f.minor (Hook.f.) Mull.] by means of QTL analysis of fruit yield and earliness under conditions of salinity. From six polymorphic genomic regions involved in salt tolerance, three contained segregant salt-tolerant QTLs for the three families; two were found only in both families derived from L.pimpinellifolium; and one, involved in fruit number, was detected only in one of the L.pimpinellifolium families. Some differences regarding the effects of the wild alleles at orthologous QTLs were found. These effects were always negative in the L. chesmannii family. Comparing both L. pimpinellifolium families, the “wild” alleles at two out of nine common QTLs for fruit number and weight had effects with opposite directions, and the mode of gene action was clearly different at five of them. QTL analysis of earliness revealed the largest genotypic differences among families. Most drastic differences were found for the epistatic interactions in which all genomic regions containing QTLs were involved. These interactions between unlinked genes increased the range of variation of means, mainly upwards, as compared with genotypes at individual QTLs. Only one (affecting fruit weight) out of 27 interactions was detected in both L.pimpinellifolium families. Heterotic effects found for salt tolerance in one of the families can be explained by the presence of overdominant (or pseudo-overdominant) and dominant gene effects at QTLs controlling final fruit yield under conditions of salinity. Allelic variation at salt-tolerant QTLs exists, changing the additive and, mainly, the non-additive components of the genotypic value. Consequently, it may negatively affect the general applicability (or efficiency) of marker-assisted selection to improve salt tolerance in other segregant populations where QTLs were not studied. The use of more informative co-dominant markers, like microsatelites, might overcome these problems.


The Plant Cell | 2000

Genetic Control and Evolution of Sesquiterpene Biosynthesis in Lycopersicon esculentum and L. hirsutum

Rutger Van der Hoeven; Antonio J. Monforte; David C Breeden; Steven D. Tanksley; John C. Steffens

Segregation analysis between Lysopersicon esculentum (cultivated tomato) and L. hirsutum (wild form) in conjunction with positional verification by using near-isogenic lines demonstrated that biosynthesis of two structurally different classes of sesquiterpenes in these species is controlled by loci on two different chromosomes. A locus on chromosome 6, Sesquiterpene synthase1 (Sst1), was identified for which the L. esculentum allele is associated with the biosynthesis of β-caryophyllene and α-humulene. At this same locus, the L. hirsutum allele is associated with biosynthesis of germacrene B, germacrene D, and an unidentified sesquiterpene. Genomic mapping, cDNA isolation, and heterologous expression of putative sesquiterpene synthases from both L. esculentum and L. hirsutum revealed that Sst1 is composed of two gene clusters 24 centimorgans apart, Sst1-A and Sst1-B, and that only the genes in the Sst1-A cluster are responsible for accumulation of chromosome 6–associated sesquiterpenes. At a second locus, Sst2, on chromosome 8, the L. hirsutum allele specified accumulation of α-santalene, α-bergamotene, and β-bergamotene. Surprisingly, the L. esculentum allele for Sst2 is not associated with the expression of any sesquiterpenes, which suggests that cultivated tomato may have a nonfunctional allele. Sesquiterpene synthase cDNA clones on chromosome 6 do not cross-hybridize on genomic DNA gel blots with putative sesquiterpene synthases on chromosome 8, an indication that the genes in Sst1 and Sst2 are highly diverged, each being responsible for the biosynthesis of structurally different sets of sesquiterpenes.


Theoretical and Applied Genetics | 2001

Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization

Antonio J. Monforte; E. Friedman; D. Zamir; S. D. Tanksley

Abstract Quantitative Trait Locus (QTL) allelic variation was studied by analyzing near-isogenic lines (NILs) carrying homologous introgressions on chromosome 4 from three green-fruited wild tomato species. The NILs affect agronomic (yield, brix, fruit weight) and fruit (fruit shape, color, epidermal reticulation) traits in a similar manner. However, significant differences were detected in the magnitudes of the effects, the dominance deviations and epistatic interactions, indicating that those species carry different alleles for the QTL. As the QTL did not show any interaction across environments, gene-tic backgrounds or other QTLs, it can be used to introduce novel genetic variation into a broad range of cultivars. Analysis of new recombinant NILs showed that fruit traits are controlled by several linked genetic loci, whereas multiple genetic loci control the agronomic traits within the original introgression. The hypothesis that QTLs may be composed of multiple linked genes can not be rejected prior to implement projects for QTL isolation and cloning. Loci involved in color enhancement could not be related to any known gene involved in the carotenoid biosynthesis pathway, therefore it is hypothesized that the function of those loci must be related to the genetic regulation of the carotenoid biosynthetic pathway.


Theoretical and Applied Genetics | 2008

Candidate genes and QTLs for fruit ripening and softening in melon

Eduard Moreno; Javier Obando; Noelia Dos-Santos; J. Pablo Fernández-Trujillo; Antonio J. Monforte; Jordi Garcia-Mas

Different factors affect the quality of melon fruit and among them long shelf life is critical from the consumer’s point of view. In melon, cultivars showing both climacteric and non-climacteric ripening types are found. In this study we have investigated climacteric ripening and fruit softening using a collection of near-isogenic lines (NILs) derived from the non-climacteric melon parental lines PI 161375 (SC) and “Piel de Sapo” (PS). Surprisingly, we found that QTL eth3.5 in NIL SC3-5b induced a climacteric-ripening phenotype with increased respiration and ethylene levels. Data suggest that the non-climacteric phenotypes from PI 161375 and “Piel de Sapo” may be the result of mutations in different genes. Several QTLs for fruit flesh firmness were also detected. Candidate genes putatively involved in ethylene regulation, biosynthesis and perception and cell wall degradation were mapped and some colocations with QTLs were observed. These results may provide additional data towards understanding of non-climacteric ripening in melon.

Collaboration


Dive into the Antonio J. Monforte's collaboration.

Top Co-Authors

Avatar

Jordi Garcia-Mas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pere Arús

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Belén Picó

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Antonio Granell

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Iban Eduardo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Eduard Moreno

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan Antonio Martínez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Esteras

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge