Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio J. Oliveira-dos-Santos.
Nature | 1999
Young-Yun Kong; Hiroki Yoshida; Ildiko Sarosi; Hong-Lin Tan; Emma Timms; Casey Capparelli; Sean Morony; Antonio J. Oliveira-dos-Santos; Gwyneth Van; Annick Itie; Wilson Khoo; Andrew Wakeham; Colin R. Dunstan; David L. Lacey; Tak W. Mak; William J. Boyle; Josef M. Penninger
The tumour-necrosis-factor-family molecule osteoprotegerin ligand (OPGL; also known as TRANCE, RANKL and ODF) has been identified as a potential osteoclast differentiation factor and regulator of interactions between T cells and dendritic cells in vitro. Mice with a disrupted opgl gene show severe osteopetrosis and a defect in tooth eruption, and completely lack osteoclasts as a result of an inability of osteoblasts to support osteoclastogenesis. Although dendritic cells appear normal, opgl-deficient mice exhibit defects in early differentiation of T and B lymphocytes. Surprisingly, opgl-deficient mice lack all lymph nodes but have normal splenic structure and Peyers patches. Thus OPGL is a new regulator of lymph-node organogenesis and lymphocyte development and is an essential osteoclast differentiation factor in vivo.
Nature | 2002
Michael A. Crackower; Gavin Y. Oudit; Chana Yagil; Ivona Kozieradzki; Sam E. Scanga; Antonio J. Oliveira-dos-Santos; Joan da Costa; Liyong Zhang; York Pei; James W. Scholey; Carlos M. Ferrario; Armen S. Manoukian; Mark C. Chappell; Peter H. Backx; Yoram Yagil; Josef M. Penninger
Cardiovascular diseases are predicted to be the most common cause of death worldwide by 2020. Here we show that angiotensin-converting enzyme 2 (ace2) maps to a defined quantitative trait locus (QTL) on the X chromosome in three different rat models of hypertension. In all hypertensive rat strains, ACE2 messenger RNA and protein expression were markedly reduced, suggesting that ace2 is a candidate gene for this QTL. Targeted disruption of ACE2 in mice results in a severe cardiac contractility defect, increased angiotensin II levels, and upregulation of hypoxia-induced genes in the heart. Genetic ablation of ACE on an ACE2 mutant background completely rescues the cardiac phenotype. But disruption of ACER, a Drosophila ACE2 homologue, results in a severe defect of heart morphogenesis. These genetic data for ACE2 show that it is an essential regulator of heart function in vivo.
Nature | 2000
Kurt Bachmaier; Connie Krawczyk; Ivona Kozieradzki; Young-Yun Kong; Takehiko Sasaki; Antonio J. Oliveira-dos-Santos; Sanjeev Mariathasan; Dennis Bouchard; Andrew Wakeham; Annick Itie; Jenny Le; Pamela S. Ohashi; Ildiko Sarosi; Hiroshi Nishina; Stan Lipkowitz; Josef Penninger
The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b -/- lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b-/- T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-γ or tumour necrosis factor-α. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.
Cell | 2002
Michael A. Crackower; Gavin Y. Oudit; Ivona Kozieradzki; Hui Sun; Takehiko Sasaki; Emilio Hirsch; Akira Suzuki; Tetsuo Shioi; Junko Irie-Sasaki; Rajan Sah; Hai-Ying M. Cheng; Vitalyi O. Rybin; Giuseppe Lembo; Luigi Fratta; Antonio J. Oliveira-dos-Santos; Jeffery L. Benovic; C. Ronald Kahn; Seigo Izumo; Susan F. Steinberg; Matthias P. Wymann; Peter H. Backx; Josef M. Penninger
The PTEN/PI3K signaling pathway regulates a vast array of fundamental cellular responses. We show that cardiomyocyte-specific inactivation of tumor suppressor PTEN results in hypertrophy, and unexpectedly, a dramatic decrease in cardiac contractility. Analysis of double-mutant mice revealed that the cardiac hypertrophy and the contractility defects could be genetically uncoupled. PI3Kalpha mediates the alteration in cell size while PI3Kgamma acts as a negative regulator of cardiac contractility. Mechanistically, PI3Kgamma inhibits cAMP production and hypercontractility can be reverted by blocking cAMP function. These data show that PTEN has an important in vivo role in cardiomyocyte hypertrophy and GPCR signaling and identify a function for the PTEN-PI3Kgamma pathway in the modulation of heart muscle contractility.
Journal of Clinical Investigation | 2003
Scott P. Heximer; Russell H. Knutsen; Xiaoguang Sun; Kevin M. Kaltenbronn; Man Hee Rhee; Ning Peng; Antonio J. Oliveira-dos-Santos; Josef M. Penninger; Anthony J. Muslin; Thomas H. Steinberg; J. Michael Wyss; Robert P. Mecham; Kendall J. Blumer
Signaling by hormones and neurotransmitters that activate G protein-coupled receptors (GPCRs) maintains blood pressure within the normal range despite large changes in cardiac output that can occur within seconds. This implies that blood pressure regulation requires precise kinetic control of GPCR signaling. To test this hypothesis, we analyzed mice deficient in RGS2, a GTPase-activating protein that greatly accelerates the deactivation rate of heterotrimeric G proteins in vitro. Both rgs2+/- and rgs2-/- mice exhibited a strong hypertensive phenotype, renovascular abnormalities, persistent constriction of the resistance vasculature, and prolonged response of the vasculature to vasoconstrictors in vivo. Analysis of P2Y receptor-mediated Ca2+ signaling in vascular smooth muscle cells in vitro indicated that loss of RGS2 increased agonist potency and efficacy and slowed the kinetics of signal termination. These results establish that abnormally prolonged signaling by G protein-coupled vasoconstrictor receptors can contribute to the onset of hypertension, and they suggest that genetic defects affecting the function or expression of RGS2 may be novel risk factors for development of hypertension in humans.
Cell | 2002
Hai-Ying M. Cheng; Graham M. Pitcher; Steven R. Laviolette; Ian Q. Whishaw; Kit I. Tong; Lisa Kockeritz; Teiji Wada; Nicholas Joza; Michael A. Crackower; Jason Goncalves; Ildiko Sarosi; James R. Woodgett; Antonio J. Oliveira-dos-Santos; Mitsuhiko Ikura; Derek van der Kooy; Michael W. Salter; Josef M. Penninger
Control and treatment of chronic pain remain major clinical challenges. Progress may be facilitated by a greater understanding of the mechanisms underlying pain processing. Here we show that the calcium-sensing protein DREAM is a transcriptional repressor involved in modulating pain. dream(-/-) mice displayed markedly reduced responses in models of acute thermal, mechanical, and visceral pain. dream(-/-) mice also exhibited reduced pain behaviors in models of chronic neuropathic and inflammatory pain. However, dream(-/-) mice showed no major defects in motor function or learning and memory. Mice lacking DREAM had elevated levels of prodynorphin mRNA and dynorphin A peptides in the spinal cord, and the reduction of pain behaviors in dream(-/-) mice was mediated through dynorphin-selective kappa (kappa)-opiate receptors. Thus, DREAM appears to be a critical transcriptional repressor in pain processing.
Nature Immunology | 2001
Josef M. Penninger; Junko Irie-Sasaki; Takehiko Sasaki; Antonio J. Oliveira-dos-Santos
Identified as the first and prototypic transmembrane protein tyrosine phosphatase (PTPase), CD45 has been extensively studied for over two decades and is thought to be important for positively regulating antigen-receptor signaling via the dephosphorylation of Src kinases. However, new evidence indicates that CD45 can function as a Janus kinase PTPase that negatively controls cytokine-receptor signaling. A point mutation in CD45, which appears to affect CD45 dimerization, and a genetic polymorphism that affects alternative CD45 splicing are implicated in autoimmunity in mice and multiple sclerosis in humans. CD45 is expressed in multiple isoforms and the modulation of specific CD45 splice variants with antibodies can prevent transplant rejections. In addition, loss of CD45 can affect microglia activation in a mouse model for Alzheimers disease. Thus, CD45 is moving rapidly back into the spotlight as a drug target and central regulator involved in differentiation of multiple hematopoietic cell lineages, autoimmunity and antiviral immunity.
Immunity | 2002
Connie M. Krawczyk; Antonio J. Oliveira-dos-Santos; Takehiko Sasaki; Emily Griffiths; Pamela S. Ohashi; Scott B. Snapper; Frederick W. Alt; Josef M. Penninger
Integrin-mediated adhesion is essential for the formation of stable contacts between T cells and antigen-presenting cells (APCs). We show that Vav1 controls integrin-mediated adhesion of thymocytes and T cells to ECM proteins and ICAM1 following TCR stimulation. In a peptide-specific system, Vav1 is required for T cell adhesion to peptide-loaded APCs. Intriguingly, TCR-induced cell adhesion and aggregation of integrins occurs independent of WASP. Whereas LFA-1 and actin caps colocalize in wasp(-/-) T cells in response to TCR stimulation, loss of WASP uncouples TCR caps from actin patches. Our data reveal a novel role for Vav1 and WASP in the regulation of TCR-induced integrin clustering and cell adhesion and show that integrin and TCR clustering are controlled by distinct pathways.
Nature Medicine | 2005
Teiji Wada; Tomoki Nakashima; Antonio J. Oliveira-dos-Santos; Juerg A. Gasser; Hiromitsu Hara; Georg Schett; Josef M. Penninger
Morphogenesis and remodeling of bone involve synthesis of bone matrix by osteoblasts and coordinate resorption of bone by osteoclasts. Defective bone remodeling caused by altered osteoclast activity underlies a multitude of osteopenic disorders. Receptor activator of NF-κB (RANK) and its ligand RANKL have been identified as essential factors involved in osteoclast development and bone remodeling, but their mechanism and interacting factors have not been fully characterized. Here we report that the molecular adapter Grb-2-associated binder-2 (Gab2) associates with RANK and mediates RANK-induced activation of NF-κB, Akt and Jnk. Inactivation of the gene encoding Gab2 in mice results in osteopetrosis and decreased bone resorption as a result of defective osteoclast differentiation. We also show that Gab2 has a crucial role in the differentiation of human progenitor cells into osteoclasts. We have thus identified a new, key regulatory scaffold molecule, Gab2, that controls select RANK signaling pathways and is essential for osteoclastogenesis and bone homeostasis.
Journal of Experimental Medicine | 2003
Claudia Gonzalez-Espinosa; Sandra Odom; Ana Olivera; J. Peyton Hobson; Maria Eugenia Cid Martinez; Antonio J. Oliveira-dos-Santos; Lillian Barra; Sarah Spiegel; Josef M. Penninger; Juan Rivera
Mast cell degranulation and de novo cytokine production is a consequence of antigen-aggregation of the immunoglobulin E (IgE)-occupied high affinity receptor for IgE (FcɛRI). Herein, we report that lymphokines that promote allergic inflammation, like MCP-1, were potently induced at low antigen (Ag) concentrations or at low receptor occupancy with IgE whereas some that down-regulate this response, like interleukin (IL)-10, required high receptor occupancy. Weak stimulation of mast cells caused minimal degranulation whereas a half-maximal secretory response was observed for chemokines and, with the exception of TNF-α, a weaker cytokine secretory response was observed. The medium from weakly stimulated mast cells elicited a monocyte/macrophage chemotactic response similar to that observed at high receptor occupancy. Weak stimulation also favored the phosphorylation of Gab2 and p38MAPK, while LAT and ERK2 phosphorylation was induced by a stronger stimulus. Gab2-deficient mast cells were severely impaired in chemokine mRNA induction whereas LAT-deficient mast cells showed a more pronounced defect in cytokines. These findings demonstrate that perturbation of small numbers of IgE receptors on mast cells favors certain signals that contribute to a lymphokine response that can mediate allergic inflammation.