Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio M. Ferreira is active.

Publication


Featured researches published by Antonio M. Ferreira.


Journal of Biological Chemistry | 2010

Identification and characterization of the first small molecule inhibitor of MDMX.

Damon R. Reed; Ying Shen; Anang A. Shelat; Leggy A. Arnold; Antonio M. Ferreira; Fangyi Zhu; Nicholas Mills; David C. Smithson; Catherine Regni; Donald Bashford; Samantha A. Cicero; Brenda A. Schulman; Aart G. Jochemsen; R. Kiplin Guy; Michael A. Dyer

The p53 pathway is disrupted in virtually every human tumor. In ∼50% of human cancers, the p53 gene is mutated, and in the remaining cancers, the pathway is dysregulated by genetic lesions in other genes that modulate the p53 pathway. One common mechanism for inactivation of the p53 pathway in tumors that express wild-type p53 is increased expression of MDM2 or MDMX. MDM2 and MDMX bind p53 and inhibit its function by distinct nonredundant mechanisms. Small molecule inhibitors and small peptides have been developed that bind MDM2 in the p53-binding pocket and displace the p53 protein, leading to p53-mediated cell cycle exit and apoptosis. To date, peptide inhibitors of MDMX have been developed, but no small molecule inhibitors have been reported. We have developed biochemical and cell-based assays for high throughput screening of chemical libraries to identify MDMX inhibitors and identified the first MDMX inhibitor SJ-172550. This compound binds reversibly to MDMX and effectively kills retinoblastoma cells in which the expression of MDMX is amplified. The effect of SJ-172550 is additive when combined with an MDM2 inhibitor. Results from a series of biochemical and structural modeling studies suggest that SJ-172550 binds the p53-binding pocket of MDMX, thereby displacing p53. This lead compound is a useful chemical scaffold for further optimization of MDMX inhibitors that may eventually be used to treat pediatric cancers and various adult tumors that overexpress MDMX or have similar genetic lesions. When combined with selective MDM2 inhibitors, SJ-172550 may also be useful for treating tumors that express wild-type p53.


Nature Genetics | 2015

NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells

Steven W. Paugh; Erik Bonten; Daniel Savic; Laura B. Ramsey; William E. Thierfelder; Prajwal Gurung; R. K. Subbarao Malireddi; Marcelo L. Actis; Anand Mayasundari; Jaeki Min; David R. Coss; Lucas T. Laudermilk; John C. Panetta; J. Robert Mccorkle; Yiping Fan; Kristine R. Crews; Gabriele Stocco; Mark R. Wilkinson; Antonio M. Ferreira; Cheng Cheng; Wenjian Yang; Seth E. Karol; Christian A. Fernandez; Barthelemy Diouf; Colton Smith; J. Kevin Hicks; Alessandra Zanut; Audrey Giordanengo; Daniel Crona; Joy J. Bianchi

Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.


Journal of Computational Chemistry | 2005

An augmented effective core potential basis set for the calculation of molecular polarizabilities

Nicholas P. Labello; Antonio M. Ferreira; Henry A. Kurtz

Calculations of molecular polarizabilities require basis sets capable of accurately describing the responses of the electrons to an external perturbation. Unfortunately, basis sets that yield suitable quantitative results have traditionally been all‐electron sets with large numbers of primitives, making their use computationally intractable even for moderately sized systems. We present a systematic augmentation of the effective core potential basis set of Stevens et al. [J Chem Phys 81, 12 (1984), Can J Chem 70, 612 (1992)] for 39 main group elements based on the procedure used to construct diffuse and polarization functions in the well‐known Sadlej basis sets [Collec Czech Chem Comm 53, 1995 (1988)]. Representative calculations have been performed and we have shown that results to within 1% of all‐electron calculations using the Sadlej basis set can be obtained for <1–35% of the computational cost using this new basis set.


Protein Science | 2009

Sequence requirement and subtype specificity in the high‐affinity interaction between human frizzled and dishevelled proteins

Chandanamali Punchihewa; Antonio M. Ferreira; Robert Cassell; Patrick Rodrigues; Naoaki Fujii

Members of the Wnt family of lipoglycoproteins initiate signaling by binding to Frizzled (Fz) receptors, and the signal is then relayed by Disheveled (Dvl). The Dvl PDZ domain is known to interact directly with a peptide derived from the KTXXXW motif of Fz7, which is conserved in all known Fz subtypes. We found that an extended region spanning the KTXXXW motif on both its N‐terminal and C‐terminal sides dramatically influences the affinity of peptides derived from Fz7 for Dvl PDZ. An alanine scanning study identified the specific residues external to the KTXXXW motif that are important for high‐affinity binding. In a circular dichroism analysis, mutation of some of these critical residues resulted in peptide conformational changes, suggesting that the secondary structure of the peptides contributes to Fz‐Dvl PDZ binding. Of the 10 known Fz subtypes, peptides derived from only Fz1, Fz2, Fz3, Fz4, and Fz7 directly bound to Dvl PDZ domain in our study. Other Fz subtypes, including some known to be involved in Wnt/β‐catenin signaling (Fz5, Fz9), did not bind to Dvl, suggesting that direct interaction with Dvl PDZ does not determine the subtype‐specific functionality of Fz. Molecular modeling and circular dichroism studies indicated that the Fz peptides that bind to Dvl PDZ domain form specific conformations that are different from those of nonbinding peptides.


Bioorganic & Medicinal Chemistry Letters | 2008

Rational design of the first small-molecule antagonists of NHERF1/EBP50 PDZ domains.

Anand Mayasundari; Antonio M. Ferreira; Liwen He; Neeraj Mahindroo; Don Bashford; Naoaki Fujii

This report describes the first small-molecule antagonists that specifically target the ligand-binding pocket of PDZ domains of NHERF1 multi-functional adaptor protein. Comparison of the peptide sequence homology between the native ligand of NHERF1 PDZ domains and an indole-based non-peptide chemical scaffold allowed the design of a small-molecule antagonist of NHERF1 PDZ domains.


Bioorganic & Medicinal Chemistry Letters | 2003

Synthesis and testing of novel phenyl substituted side-chain analogues of classical cannabinoids

Mathangi Krishnamurthy; Antonio M. Ferreira; Bob M. Moore

A series of novel phenyl substituted side-chain analogues of classical cannabinoids were synthesized and their CB1 and CB2 binding affinities were evaluated relative to Delta(8)-THC and compound 2. CB1 and CB2 binding assays indicate that the dimethyl and ketone analogues (3) and (6) display selectivity for the CB2 receptor in comparison to delta(8)-THC and compound 2. This study provides newer insights into the geometrical and functional group requirements of the ligand binding pockets of the CB1 and the CB2 receptors.


Journal of Biological Chemistry | 2011

Incomplete Folding upon Binding Mediates Cdk4/Cyclin D Complex Activation by Tyrosine Phosphorylation of Inhibitor p27 Protein

Li Ou; Antonio M. Ferreira; Steve Otieno; Limin Xiao; Donald Bashford; Richard W. Kriwacki

p27Kip1 (p27), an intrinsically disordered protein, regulates the various Cdk/cyclin complexes that control cell cycle progression. The kinase inhibitory domain of p27 contains a cyclin-binding subdomain (D1), a Cdk-binding subdomain (D2), and a linker helix subdomain that connects D1 and D2. Here, we report that, despite extensive sequence conservation between Cdk4/cyclin D1 (hereafter Cdk4/cyclin D) and Cdk2/cyclin A, the thermodynamic details describing how the individual p27 subdomains contribute to equally high affinity binding to these two Cdk/cyclin complexes are strikingly different. Differences in enthalpy/entropy compensation revealed that the D2 subdomain of p27 folds incompletely when binding Cdk4/cyclin D versus Cdk2/cyclin A. Incomplete binding-induced folding exposes tyrosine 88 of p27 for phosphorylation by the nonreceptor tyrosine kinase Abl. Importantly, tyrosine phosphorylation (of p27) relieves Cdk inhibition by p27, enabling cell cycle entry. Furthermore, the interaction between a conserved hydrophobic patch on cyclin D and subdomain D1 is much weaker than that with cyclin A; consequently, a construct containing subdomains D1 and LH (p27-D1LH) does not inhibit substrate binding to Cdk4/cyclin D as it does to Cdk2/cyclin A. Our results provide a mechanism by which Cdk4 (within the p27/Cdk4/cyclin D complex) is poised to be activated by extrinsic mitogenic signals that impinge upon p27 at the earliest stage of cell division. More broadly, our results further illustrate the regulatory versatility of intrinsically disordered proteins.


Bioorganic & Medicinal Chemistry | 2003

Synthesis and testing of novel classical cannabinoids: exploring the side chain ligand binding pocket of the CB1 and CB2 receptors.

Asha Nadipuram; Mathangi Krishnamurthy; Antonio M. Ferreira; Wei Li; Bob M. Moore

A series of C3 cyclic side-chain analogues of classical cannabinoids were synthesized to probe the ligand binding pocket of the CB1 and CB2 receptors. The analogues were evaluated for CB1 and CB2 receptor binding affinities relative to delta(8)-THC. The C3 side-chain geometries of the analogues were studied using high field NMR spectroscopy and quantum mechanical calculations. The results of these studies provide insights into the geometry of the ligand binding pocket of the CB1 and CB2 receptors.


PLOS Computational Biology | 2016

MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

Steven W. Paugh; David R. Coss; Ju Bao; Lucas T. Laudermilk; Christy Rani R. Grace; Antonio M. Ferreira; M. Brett Waddell; Granger Ridout; Deanna Naeve; Michael R. Leuze; Philip F. LoCascio; John C. Panetta; Mark R. Wilkinson; Ching-Hon Pui; Clayton W. Naeve; Edward C. Uberbacher; Erik Bonten; William E. Evans

MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.


Bioorganic & Medicinal Chemistry | 2009

Quantitative structure-activity relationship (QSAR) for a series of novel cannabinoid derivatives using descriptors derived from semi-empirical quantum-chemical calculations

Antonio M. Ferreira; Mathangi Krishnamurthy; Bob M. Moore; David Finkelstein; Donald Bashford

Recent work implicating the cannabinoid receptors in a wide range of human pathologies has intensified the need for reliable QSAR models for drug discovery and lead optimization. Predicting the ligand selectivity of the cannabinoid CB(1) and CB(2) receptors in the absence of generally accepted models for their structures requires a ligand-based approach, which makes such studies ideally suited for quantum-chemical treatments. We present a QSAR model for ligand-receptor interactions based on quantum-chemical descriptors (an eQSAR) obtained from PM3 semi-empirical calculations for a series of phenyl-substituted cannabinoids based on a ligand with known in vivo activity against glioma [Duntsch, C.; Divi, M. K.; Jones, T.; Zhou, Q.; Krishnamurthy, M.; Boehm, P.; Wood, G.; Sills, A.; Moore. B. M., II. J. Neuro-Oncol., 2006, 77, 143] and a set of structurally similar adamantyl-substituted cannabinoids. A good model for CB(2) inhibition (R(2)=0.78) has been developed requiring only four explanatory variables derived from semi-empirical results. The role of the ligand dipole moment is discussed and we propose that the CB(2) binding pocket likely possesses a significant electric field. Describing the affinities with respect to the CB(1) receptor was not possible with the current set of ligands and descriptors, although the attempt highlighted some important points regarding the development of QSAR models.

Collaboration


Dive into the Antonio M. Ferreira's collaboration.

Top Co-Authors

Avatar

Bob M. Moore

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Mathangi Krishnamurthy

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Donald Bashford

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. Kriwacki

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Cheng

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David R. Coss

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Erik Bonten

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jaeki Min

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge