Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio M. Oller-Marcén is active.

Publication


Featured researches published by Antonio M. Oller-Marcén.


Integers | 2012

On k-Lehmer Numbers

J. M. Grau; Antonio M. Oller-Marcén

Abstract. Lehmers totient problem consists of determining the set of positive integers n such that where is Eulers totient function. In this paper we introduce the concept of k-Lehmer number. A k-Lehmer number is a composite number such that . The relation between k-Lehmer numbers and Carmichael numbers leads to a new characterization of Carmichael numbers and to some conjectures related to the distribution of Carmichael numbers which are also k-Lehmer numbers.


Monatshefte für Mathematik | 2015

On the congruence \(1^m + 2^m + \cdots + m^m\equiv n \pmod {m}\) with \(n\mid m\)

J. M. Grau; Antonio M. Oller-Marcén; Jonathan Sondow

We show that if the congruence above holds and


International Journal of Algebra and Computation | 2017

ON POWER SUMS OF MATRICES OVER A FINITE COMMUTATIVE RING

P. Fortuny; J. M. Grau; Antonio M. Oller-Marcén; Ignacio F. Rúa

n\mid m


Publicationes Mathematicae Debrecen | 2015

Counting invertible sums of squares modulo

Catalina Calderon; J. M. Grau; Antonio M. Oller-Marcén; Laszlo Toth

, then the quotient


Journal of Combinatorial Optimization | 2018

n

L. Bayón; P. Fortuny Ayuso; J. M. Grau; Antonio M. Oller-Marcén; M. M. Ruiz

Q:=m/n


Finite Fields and Their Applications | 2017

and a new generalization of Euler's totient function

J. M. Grau; Antonio M. Oller-Marcén

satisfies


Bulletin of The Korean Mathematical Society | 2014

The Best-or-Worst and the Postdoc problems

J. M. Grau; Antonio M. Oller-Marcén

\sum_{p\mid Q} \frac{Q}{p}+1 \equiv 0\pmod{Q}


Discrete Applied Mathematics | 2018

Power sums over finite commutative unital rings

Max A. Alekseyev; J. M. Grau; Antonio M. Oller-Marcén

, where


Discrete Applied Mathematics | 2018

ON THE LAST DIGIT AND THE LAST NON-ZERO DIGIT OF n n IN BASE b

Max A. Alekseyev; J. M. Grau; Antonio M. Oller-Marcén

p


Advances in Applied Clifford Algebras | 2017

Computing solutions to the congruence 1n+2n+⋯+nn≡p(modn)

J. M. Grau; Celino Miguel; Antonio M. Oller-Marcén

is prime. The only known solutions of the latter congruence are

Collaboration


Dive into the Antonio M. Oller-Marcén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celino Miguel

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max A. Alekseyev

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge