Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio M. Persico is active.

Publication


Featured researches published by Antonio M. Persico.


FEBS Letters | 1994

cDNA Cloning of an orphan opiate receptor gene family member and its splice variant

Jia Bei Wang; Peter S. Johnson; Yasuo Imai; Antonio M. Persico; Bradley A. Ozenberger; C. Mark Eppler; George R. Uhl

Radioligand binding and cDNA homology studies have suggested the existence of opiate receptors distinct from the recently‐cloned, μ, δ and κ receptors. XOR1S, a rat brain cDNA whose predicted translation product displays 67–72% homology with those encoded by μ1, δ1 and κ1 opiate receptor cDNAs, was constructed from two partial cDNAs identified through cDNA homology approaches. A longer XOR1L variant of this cDNA was also identified by polymerase chain reaction studies using genomic DNA and cDNA from brain and peripheral tissues. XOR1 mRNA is most highly expressed in hypothalamus. COS cell expression of both clones confers neither robust binding of opiate ligands nor reproducible opiate inhibition of forskolin‐stimulated adenylate cyclase. These studies identify an orphan clone that helps to define features of the opiate receptor gene family, including apparent differential splicing and expression in peripheral tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A genetic variant that disrupts MET transcription is associated with autism

Daniel B. Campbell; James S. Sutcliffe; Philip J. Ebert; Roberto Militerni; Carmela Bravaccio; Simona Trillo; Maurizio Elia; Cindy Schneider; Raun Melmed; Roberto Sacco; Antonio M. Persico; Pat Levitt

There is strong evidence for a genetic predisposition to autism and an intense interest in discovering heritable risk factors that disrupt gene function. Based on neurobiological findings and location within a chromosome 7q31 autism candidate gene region, we analyzed the gene encoding the pleiotropic MET receptor tyrosine kinase in a family based study of autism including 1,231 cases. MET signaling participates in neocortical and cerebellar growth and maturation, immune function, and gastrointestinal repair, consistent with reported medical complications in some children with autism. Here, we show genetic association (P = 0.0005) of a common C allele in the promoter region of the MET gene in 204 autism families. The allelic association at this MET variant was confirmed in a replication sample of 539 autism families (P = 0.001) and in the combined sample (P = 0.000005). Multiplex families, in which more than one child has autism, exhibited the strongest allelic association (P = 0.000007). In case-control analyses, the autism diagnosis relative risk was 2.27 (95% confidence interval: 1.41–3.65; P = 0.0006) for the CC genotype and 1.67 (95% confidence interval: 1.11–2.49; P = 0.012) for the CG genotype compared with the GG genotype. Functional assays showed that the C allele results in a 2-fold decrease in MET promoter activity and altered binding of specific transcription factor complexes. These data implicate reduced MET gene expression in autism susceptibility, providing evidence of a previously undescribed pathophysiological basis for this behaviorally and medically complex disorder.


Neurobiology of Disease | 2008

Immune transcriptome alterations in the temporal cortex of subjects with autism

Krassimira A. Garbett; Philip J. Ebert; Amanda C. Mitchell; Carla Lintas; Barbara Manzi; Karoly Mirnics; Antonio M. Persico

Autism is a severe disorder that involves both genetic and environmental factors. Expression profiling of the superior temporal gyrus of six autistic subjects and matched controls revealed increased transcript levels of many immune system-related genes. We also noticed changes in transcripts related to cell communication, differentiation, cell cycle regulation and chaperone systems. Critical expression changes were confirmed by qPCR (BCL6, CHI3L1, CYR61, IFI16, IFITM3, MAP2K3, PTDSR, RFX4, SPP1, RELN, NOTCH2, RIT1, SFN, GADD45B, HSPA6, HSPB8 and SERPINH1). Overall, these expression patterns appear to be more associated with the late recovery phase of autoimmune brain disorders, than with the innate immune response characteristic of neurodegenerative diseases. Moreover, a variance-based analysis revealed much greater transcript variability in brains from autistic subjects compared to the control group, suggesting that these genes may represent autism susceptibility genes and should be assessed in follow-up genetic studies.


Annals of Neurology | 2007

Disruption of cerebral cortex MET signaling in autism spectrum disorder

Daniel B. Campbell; Rosanna D'Oronzio; Krassi Garbett; Philip J. Ebert; Karoly Mirnics; Pat Levitt; Antonio M. Persico

Multiple genes contribute to autism spectrum disorder (ASD) susceptibility. One particularly promising candidate is the MET gene, which encodes a receptor tyrosine kinase that mediates hepatocyte growth factor (HGF) signaling in brain circuit formation, immune function, and gastrointestinal repair. The MET promoter variant rs1858830 allele “C” is strongly associated with ASD and results in reduced gene transcription. Here we examined expression levels of MET and members of the MET signaling pathway in postmortem cerebral cortex from ASD cases and healthy control subjects.


Journal of Medical Genetics | 2008

Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist

Carla Lintas; Antonio M. Persico

Autism spectrum disorders represent a group of developmental disorders with strong genetic underpinnings. Several cytogenetic abnormalities or de novo mutations able to cause autism have recently been uncovered. In this study, the literature was reviewed to highlight genotype–phenotype correlations between causal gene mutations or cytogenetic abnormalities and behavioural or morphological phenotypes. Based on this information, a set of practical guidelines is proposed to help clinical geneticists pursue targeted genetic testing for patients with autism whose clinical phenotype is suggestive of a specific genetic or genomic aetiology.


Molecular Psychiatry | 2010

Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1

L. Palmieri; V. Papaleo; V. Porcelli; P. Scarcia; L. Gaita; Roberto Sacco; J. Hager; Francis Rousseau; Paolo Curatolo; Barbara Manzi; Roberto Militerni; Carmela Bravaccio; Simona Trillo; Cindy Schneider; Raun Melmed; Maurizio Elia; Carlo Lenti; Monica Saccani; Tiziana Pascucci; Stefano Puglisi-Allegra; K. L. Reichelt; Antonio M. Persico

Autism is a severe developmental disorder, whose pathogenetic underpinnings are still largely unknown. Temporocortical gray matter from six matched patient–control pairs was used to perform post-mortem biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier (AGC), which participates in the aspartate/malate reduced nicotinamide adenine dinucleotide shuttle and is physiologically activated by calcium (Ca2+). AGC transport rates were significantly higher in tissue homogenates from all six patients, including those with no history of seizures and with normal electroencephalograms prior to death. This increase was consistently blunted by the Ca2+ chelator ethylene glycol tetraacetic acid; neocortical Ca2+ levels were significantly higher in all six patients; no difference in AGC transport rates was found in isolated mitochondria from patients and controls following removal of the Ca2+-containing postmitochondrial supernatant. Expression of AGC1, the predominant AGC isoform in brain, and cytochrome c oxidase activity were both increased in autistic patients, indicating an activation of mitochondrial metabolism. Furthermore, oxidized mitochondrial proteins were markedly increased in four of the six patients. Variants of the AGC1-encoding SLC25A12 gene were neither correlated with AGC activation nor associated with autism-spectrum disorders in 309 simplex and 17 multiplex families, whereas some unaffected siblings may carry a protective gene variant. Therefore, excessive Ca2+ levels are responsible for boosting AGC activity, mitochondrial metabolism and, to a more variable degree, oxidative stress in autistic brains. AGC and altered Ca2+ homeostasis play a key interactive role in the cascade of signaling events leading to autism: their modulation could provide new preventive and therapeutic strategies.


Autism Research | 2008

Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder.

Daniel B. Campbell; Chun Li; James S. Sutcliffe; Antonio M. Persico; Pat Levitt

A functional promoter variant of the gene encoding the MET receptor tyrosine kinase alters SP1 and SUB1 transcription factor binding, and is associated with autism spectrum disorder (ASD). Recent analyses of postmortem cerebral cortex from ASD patients revealed altered expression of MET protein and three transcripts encoding proteins that regulate MET signaling, hepatocyte growth factor (HGF), urokinase plasminogen activator receptor (PLAUR) and plasminogen activator inhibitor‐1 (SERPINE1). To address potential risk conferred by multiple genes in the MET signaling pathway, we screened all exons and 5′ promoter regions for variants in the five genes encoding proteins that regulate MET expression and activity. Identified variants were genotyped in 664 families (2,712 individuals including 1,228 with ASD) and 312 unrelated controls. Replicating our initial findings, family‐based association test (FBAT) analyses demonstrated that the MET promoter variant rs1858830 C allele was associated with ASD in 101 new families (P=0.033). Two other genes in the MET signaling pathway also may confer risk. A haplotype of the SERPINE1 gene exhibited significant association. In addition, the PLAUR promoter variant rs344781 T allele was associated with ASD by both FBAT (P=0.006) and case–control analyses (P=0.007). The PLAUR promoter rs344781 relative risk was 1.93 (95% confidence interval [CI]: 1.12–3.31) for genotype TT and 2.42 (95% CI: 1.38–4.25) for genotype CT compared to genotype CC. Gene–gene interaction analyses suggested a significant interaction between MET and PLAUR. These data further support our hypothesis that genetic susceptibility impacting multiple components of the MET signaling pathway contributes to ASD risk.


Biochimica et Biophysica Acta | 2010

Mitochondrial dysfunction in autism spectrum disorders: Cause or effect?

Luigi Palmieri; Antonio M. Persico

Autism Spectrum Disorders encompass severe developmental disorders characterized by variable degrees of impairment in language, communication and social skills, as well as by repetitive and stereotypic patterns of behaviour. Substantial percentages of autistic patients display peripheral markers of mitochondrial energy metabolism dysfunction, such as (a) elevated lactate, pyruvate, and alanine levels in blood, urine and/or cerebrospinal fluid, (b) serum carnitine deficiency, and/or (c) enhanced oxidative stress. These biochemical abnormalities are accompanied by highly heterogeneous clinical presentations, which generally (but by no means always) encompass neurological and systemic symptoms relatively unusual in idiopathic autistic disorder. In some patients, these abnormalities have been successfully explained by the presence of specific mutations or rearrangements in their mitochondrial or nuclear DNA. However, in the majority of cases, abnormal energy metabolism cannot be immediately linked to specific genetic or genomic defects. Recent evidence from post-mortem studies of autistic brains points toward abnormalities in mitochondrial function as possible downstream consequences of dysreactive immunity and altered calcium (Ca(2+)) signalling.


Biological Psychiatry | 2007

Clinical, morphological, and biochemical correlates of head circumference in autism

Roberto Sacco; Roberto Militerni; Alessandro Frolli; Carmela Bravaccio; Antonella Gritti; Maurizio Elia; Paolo Curatolo; Barbara Manzi; Simona Trillo; Carlo Lenti; Monica Saccani; Cindy Schneider; Raun Melmed; Karl L. Reichelt; Tiziana Pascucci; Stefano Puglisi-Allegra; Antonio M. Persico

BACKGROUND Head growth rates are often accelerated in autism. This study is aimed at defining the clinical, morphological, and biochemical correlates of head circumference in autistic patients. METHODS Fronto-occipital head circumference was measured in 241 nonsyndromic autistic patients, 3 to 16 years old, diagnosed according to DSM-IV criteria. We assessed 1) clinical parameters using the Autism Diagnostic Observation Schedule, Autism Diagnostic Interview-Revised, Vineland Adaptive Behavioral Scales, intelligence quotient measures, and an ad hoc clinical history questionnaire; 2) height and weight; 3) serotonin (5-HT) blood levels and peptiduria. RESULTS The distribution of cranial circumference is significantly skewed toward larger head sizes (p < .00001). Macrocephaly (i.e., head circumference >97th percentile) is generally part of a broader macrosomic endophenotype, characterized by highly significant correlations between head circumference, weight, and height (p < .001). A head circumference >75th percentile is associated with more impaired adaptive behaviors and with less impairment in IQ measures and motor and verbal language development. Surprisingly, larger head sizes are significantly associated with a positive history of allergic/immune disorders both in the patient and in his/her first-degree relatives. CONCLUSIONS Our study demonstrates the existence of a macrosomic endophenotype in autism and points toward pathogenetic links with immune dysfunctions that we speculate either lead to or are associated with increased cell cycle progression and/or decreased apoptosis.


Biological Psychiatry | 2004

Association between the HOXA1 A218G polymorphism and increased head circumference in patients with autism

Monica Conciatori; Christopher J. Stodgell; Susan L. Hyman; Melanie O'Bara; Roberto Militerni; Carmela Bravaccio; Simona Trillo; Francesco Montecchi; Cindy Schneider; Raun Melmed; Maurizio Elia; Lori Crawford; Sarah J. Spence; Lucianna Muscarella; Vito Guarnieri; Leonardo D'Agruma; Alessandro Quattrone; Leopoldo Zelante; Daniel Rabinowitz; Tiziana Pascucci; Stefano Puglisi-Allegra; Karl L. Reichelt; Patricia M. Rodier; Antonio M. Persico

BACKGROUND The HOXA1 gene plays a major role in brainstem and cranial morphogenesis. The G allele of the HOXA1 A218G polymorphism has been previously found associated with autism. METHODS We performed case-control and family-based association analyses, contrasting 127 autistic patients with 174 ethnically matched controls, and assessing for allelic transmission disequilibrium in 189 complete trios. RESULTS A, and not G, alleles were associated with autism using both case-control (chi(2) = 8.96 and 5.71, 1 df, p <.005 and <.025 for genotypes and alleles, respectively), and family-based (transmission/disequilibrium test chi(2) = 8.80, 1 df, p <.005) association analyses. The head circumference of 31 patients carrying one or two copies of the G allele displayed significantly larger median values (95.0th vs. 82.5th percentile, p <.05) and dramatically reduced interindividual variability (p <.0001), compared with 166 patients carrying the A/A genotype. CONCLUSIONS The HOXA1 A218G polymorphism explains approximately 5% of the variance in the head circumference of autistic patients and represents to our knowledge the first known gene variant providing sizable contributions to cranial morphology. The disease specificity of this finding is currently being investigated. Nonreplications in genetic linkage/association studies could partly stem from the dyshomogeneous distribution of an endophenotype morphologically defined by cranial circumference.

Collaboration


Dive into the Antonio M. Persico's collaboration.

Top Co-Authors

Avatar

Roberto Sacco

Università Campus Bio-Medico

View shared research outputs
Top Co-Authors

Avatar

Carmela Bravaccio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paolo Curatolo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

George R. Uhl

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Barbara Manzi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Roberto Militerni

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Cindy Schneider

Center for Autism and Related Disorders

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge