Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where António Macedo is active.

Publication


Featured researches published by António Macedo.


Nature | 2009

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov

Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.


Nature | 2008

Rare chromosomal deletions and duplications increase risk of schizophrenia

Jennifer Stone; Michael C. O’Donovan; Hugh Gurling; George Kirov; Douglas Blackwood; Aiden Corvin; Nicholas John Craddock; Michael Gill; Christina M. Hultman; Paul Lichtenstein; Andrew McQuillin; Carlos N. Pato; Douglas M. Ruderfer; Michael John Owen; David St Clair; Patrick F. Sullivan; Pamela Sklar; Shaun Purcell; Joshua M. Korn; Stuart Macgregor; Derek W. Morris; Colm O’Dushlaine; Mark J. Daly; Peter M. Visscher; Peter Holmans; Edward M. Scolnick; Nigel Melville Williams; Lucy Georgieva; Ivan Nikolov; Nadine Norton

Schizophrenia is a severe mental disorder marked by hallucinations, delusions, cognitive deficits and apathy, with a heritability estimated at 73–90% (ref. 1). Inheritance patterns are complex, and the number and type of genetic variants involved are not understood. Copy number variants (CNVs) have been identified in individual patients with schizophrenia and also in neurodevelopmental disorders, but large-scale genome-wide surveys have not been performed. Here we report a genome-wide survey of rare CNVs in 3,391 patients with schizophrenia and 3,181 ancestrally matched controls, using high-density microarrays. For CNVs that were observed in less than 1% of the sample and were more than 100 kilobases in length, the total burden is increased 1.15-fold in patients with schizophrenia in comparison with controls. This effect was more pronounced for rarer, single-occurrence CNVs and for those that involved genes as opposed to those that did not. As expected, deletions were found within the region critical for velo-cardio-facial syndrome, which includes psychotic symptoms in 30% of patients. Associations with schizophrenia were also found for large deletions on chromosome 15q13.3 and 1q21.1. These associations have not previously been reported, and they remained significant after genome-wide correction. Our results provide strong support for a model of schizophrenia pathogenesis that includes the effects of multiple rare structural variants, both genome-wide and at specific loci.


Molecular Psychiatry | 2005

Support for involvement of neuregulin 1 in schizophrenia pathophysiology

Tracey Petryshen; Frank A. Middleton; Andrew Kirby; K A Aldinger; S Purcell; A R Tahl; Christopher P. Morley; L McGann; K L Gentile; G N Rockwell; H M Medeiros; C Carvalho; António Macedo; Ana Dourado; J. Valente; Carlos Paz Ferreira; Nick Patterson; M.H. Azevedo; Mark J. Daly; Carlos N. Pato; Michele T. Pato; Pamela Sklar

Schizophrenia is a common, multigenic psychiatric disorder. Linkage studies, including a recent meta-analysis of genome scans, have repeatedly implicated chromosome 8p12-p23.1 in schizophrenia susceptibility. More recently, significant association with a candidate gene on 8p12, neuregulin 1 (NRG1), has been reported in several European and Chinese samples. We investigated NRG1 for association in schizophrenia patients of Portuguese descent to determine whether this gene is a risk factor in this population. We tested NRG1 markers and haplotypes for association in 111 parent-proband trios, 321 unrelated cases, and 242 control individuals. Associations were found with a haplotype that overlaps the risk haplotype originally reported in the Icelandic population (‘HapICE’), and two haplotypes located in the 3′ end of NRG1 (all P<0.05). However, association was not detected with HapICE itself. Comparison of NRG1 transcript expression in peripheral leukocytes from schizophrenia patients and unaffected siblings identified 3.8-fold higher levels of the SMDF variant in patients (P=0.039). Significant positive correlations (P<0.001) were found between SMDF and HRG-beta 2 expression and between HRG-gamma and ndf43 expression, suggesting common transcriptional regulation of NRG1 variants. In summary, our results suggest that haplotypes across NRG1 and multiple NRG1 variants are involved in schizophrenia.


American Journal of Human Genetics | 2004

Genomewide Linkage Analysis of Bipolar Disorder by Use of a High-Density Single-Nucleotide–Polymorphism (SNP) Genotyping Assay: A Comparison with Microsatellite Marker Assays and Finding of Significant Linkage to Chromosome 6q22

Frank A. Middleton; Michele T. Pato; K.L. Gentile; C.P. Morley; X. Zhao; A.F. Eisener; A. Brown; T.L. Petryshen; A.N. Kirby; H. Medeiros; C. Carvalho; António Macedo; Ana Dourado; Isabel Coelho; J. Valente; M.J. Soares; Carlos Paz Ferreira; M. Lei; M.H. Azevedo; James L. Kennedy; Mark J. Daly; Pamela Sklar; Carlos N. Pato

We performed a linkage analysis on 25 extended multiplex Portuguese families segregating for bipolar disorder, by use of a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the GeneChip Human Mapping 10K Array (HMA10K). Of these families, 12 were used for a direct comparison of the HMA10K with the traditional 10-cM microsatellite marker set and the more dense 4-cM marker set. This comparative analysis indicated the presence of significant linkage peaks in the SNP assay in chromosomal regions characterized by poor coverage and low information content on the microsatellite assays. The HMA10K provided consistently high information and enhanced coverage throughout these regions. Across the entire genome, the HMA10K had an average information content of 0.842 with 0.21-Mb intermarker spacing. In the 12-family set, the HMA10K-based analysis detected two chromosomal regions with genomewide significant linkage on chromosomes 6q22 and 11p11; both regions had failed to meet this strict threshold with the microsatellite assays. The full 25-family collection further strengthened the findings on chromosome 6q22, achieving genomewide significance with a maximum nonparametric linkage (NPL) score of 4.20 and a maximum LOD score of 3.56 at position 125.8 Mb. In addition to this highly significant finding, several other regions of suggestive linkage have also been identified in the 25-family data set, including two regions on chromosome 2 (57 Mb, NPL = 2.98; 145 Mb, NPL = 3.09), as well as regions on chromosomes 4 (91 Mb, NPL = 2.97), 16 (20 Mb, NPL = 2.89), and 20 (60 Mb, NPL = 2.99). We conclude that at least some of the linkage peaks we have identified may have been largely undetected in previous whole-genome scans for bipolar disorder because of insufficient coverage or information content, particularly on chromosomes 6q22 and 11p11.


Molecular Psychiatry | 2004

Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis.

Pamela Sklar; Michele T. Pato; Andrew Kirby; Tracey Petryshen; Helena Medeiros; Célia Barreto Carvalho; António Macedo; Ana Dourado; Isabel Coelho; J. Valente; M.J. Soares; Carlos Paz Ferreira; M. Lei; Andrei Verner; Thomas J. Hudson; Christopher P. Morley; James L. Kennedy; M.H. Azevedo; Eric S. Lander; Mark J. Daly; Carlos N. Pato

Schizophrenia is a common psychiatric disorder with a complex genetic etiology. To understand the genetic basis of this syndrome in Portuguese Island populations, we performed a genome-wide scan of 29 families with schizophrenia, which identified a single region on 5q31–5q35 with strong linkage (NPL=3.09, P=0.0012 at D5S820). Empirical simulations set a genome-wide threshold of NPL=3.10 for significant linkage. Additional support for this locus in schizophrenia comes from higher-density mapping and mapping of 11 additional families. The combined set of 40 families had a peak NPL=3.28 (P=0.00066) at markers D5S2112–D5S820. These data and previous linkage findings from other investigators provide strong and consistent evidence for this genomic region as a susceptibility locus for schizophrenia. Exploratory analyses of a novel phenotype, psychosis, in families with schizophrenia and bipolar disorder detected evidence for linkage to the same markers as found in schizophrenia (peak NPL=3.03, P=0.0012 at D5S820), suggesting that this locus may be responsible for the psychotic symptoms observed in both diseases.


American Journal of Medical Genetics | 2005

Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches†

Frank A. Middleton; Carlos N. Pato; Karen L. Gentile; Lindsay McGann; Andrea M. Brown; Marco Trauzzi; Heba Diab; Christopher P. Morley; Helena Medeiros; António Macedo; M. Helena Azevedo; Michele T. Pato

We performed global RNA transcript analysis and comprehensive gene group analysis of peripheral blood leukocyte (PBL) RNA from two groups of matched sib‐pairs that were discordant for either schizophrenia (n = 33 sib‐pairs) or bipolar disorder (n = 5 sib‐pairs). The pairs chosen for these analyses were selected from families with known patterns of genetic linkage (5q for schizophrenia and 6q for bipolar disorder). At the single gene level, we obtained lists of the transcripts with the most significant changes in expression and from these lists determined those with the highest degree of predictive power for classifying subjects according to diagnosis in these samples. At the gene group level, we comprehensively analyzed pairwise expression changes of more than 4,000 functional groups and cytogenetic locations, and present a novel method of displaying these data that we term “cytogenomic” mapping. Verification of selected changes in expression was performed using quantitative real‐time RT‐PCR. Our results provide compelling evidence for the utility of analyzing PBL RNA for changes in expression in neuropsychiatric disorders.


Molecular Psychiatry | 2005

Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia

Tracey L. Petryshen; Frank A. Middleton; A R Tahl; G N Rockwell; Shaun Purcell; K A Aldinger; Andrew Kirby; Christopher P. Morley; L McGann; K L Gentile; Skye Waggoner; H M Medeiros; C Carvalho; António Macedo; Margot Albus; W. Maier; Mátyás Trixler; Peter Eichhammer; Sibylle G. Schwab; Dieter B. Wildenauer; M.H. Azevedo; Michele T. Pato; Carlos N. Pato; Mark J. Daly; Pamela Sklar

We previously performed a genome-wide linkage scan in Portuguese schizophrenia families that identified a risk locus on chromosome 5q31–q35. This finding was supported by meta-analysis of 20 other schizophrenia genome-wide scans that identified 5q23.2–q34 as the second most compelling susceptibility locus in the genome. In the present report, we took a two-stage candidate gene association approach to investigate a group of gamma-aminobutyric acid (GABA) A receptor subunit genes (GABRA1, GABRA6, GABRB2, GABRG2, and GABRP) within our linkage peak. These genes are plausible candidates based on prior evidence for GABA system involvement in schizophrenia. In the first stage, associations were detected in a Portuguese patient sample with single nucleotide polymorphisms (SNPs) and haplotypes in GABRA1 (P=0.00062–0.048), GABRP (P=0.0024–0.042), and GABRA6 (P=0.0065–0.0088). The GABRA1 and GABRP findings were replicated in the second stage in an independent German family-based sample (P=0.0015–0.043). Supportive evidence for association was also obtained for a previously reported GABRB2 risk haplotype. Exploratory analyses of the effects of associated GABRA1 haplotypes on transcript levels found altered expression of GABRA6 and coexpressed genes of GABRA1 and GABRB2. Comparison of transcript levels in schizophrenia patients and unaffected siblings found lower patient expression of GABRA6 and coexpressed genes of GABRA1. Interestingly, the GABRA1 coexpressed genes include synaptic and vesicle-associated genes previously found altered in schizophrenia prefrontal cortex. Taken together, these results support the involvement of the chromosome 5q GABAA receptor gene cluster in schizophrenia, and suggest that schizophrenia-associated haplotypes may alter expression of GABA-related genes.


Molecular Psychiatry | 2003

Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3η gene

Albert H.C. Wong; Fabio Macciardi; T Klempan; W. Kawczynski; Cathy L. Barr; S Lakatoo; M Wong; C Buckle; Joseph Trakalo; E Boffa; J. Oak; M-H Azevedo; Ana Dourado; Isabel Coelho; António Macedo; Am Vicente; J. Valente; C P Ferreira; Michele T. Pato; Carlos N. Pato; James L. Kennedy; H.H.M. Van Tol

Although the genetic contribution to schizophrenia is substantial, positive findings in whole-genome linkage scans have not been consistently replicated. We analyzed gene expression in various rat conditions to identify novel candidate genes for schizophrenia. Suppression subtraction hybridization (SSH), with polyA mRNA from temporal and frontal cortex of rats, was used to identify differentially expressed genes. Expression of mRNA was compared between adult Lewis and Fischer 344 (F344) rats, adult and postnatal day 6 (d6) F344, and adult F344 treated with haloperidol or control vehicle. These groups were chosen because each highlights a particular aspect of schizophrenia: differences in strain vulnerability to behavioral analogs of psychosis; factors that may relate to disease onset in relation to CNS development; and improvement of symptoms by haloperidol. The 14-3-3 gene family, as represented by 14-3-3γ and 14-3-3ζ isoforms in the SSH study, and SNAP-25 were among the candidate genes. Genetic association between schizophrenia and the 14-3-3η gene, positioned close to a genomic locus implicated in schizophrenia, and SNAP-25 genes was analyzed in 168 schizophrenia probands and their families. These findings address three different genes in the 14-3-3 family. We find a significant association with schizophrenia for two polymorphisms in the 14-3-3η gene: a 7 bp variable number of tandem repeats in the 5′ noncoding region (P=0.036, 1 df), and a 3′ untranslated region SNP (753G/A) that is an RFLP visualized with Ava II (P=0.028). There was no significant genetic association with SNAP-25. The candidate genes identified may be of functional importance in the etiology, pathophysiology or treatment response of schizophrenia or psychotic symptoms. This is to our knowledge the first report of a significant association between the 14-3-3η-chain gene and schizophrenia in a family-based sample, strengthening prior association reports in case–control studies and microarray gene expression studies.


Molecular Psychiatry | 2011

GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia

Xiangning Chen; G. Lee; Brion S. Maher; Ayman H. Fanous; Jingchun Chen; Zhongming Zhao; An-Yuan Guo; E J C G van den Oord; Patrick F. Sullivan; Jianxin Shi; Douglas F. Levinson; Pablo V. Gejman; Alan R. Sanders; Jubao Duan; Michael John Owen; Nicholas John Craddock; Michael Conlon O'Donovan; Janet Blackman; D. Lewis; George Kirov; Wenwen Qin; Sibylle G. Schwab; Dieter B. Wildenauer; Kodavali V. Chowdari; Vishwajit L. Nimgaonkar; Richard E. Straub; Daniel R. Weinberger; Francis O'Neill; Dominic M. Walsh; Michal Bronstein

We conducted data-mining analyses using the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) and molecular genetics of schizophrenia genome-wide association study supported by the genetic association information network (MGS-GAIN) schizophrenia data sets and performed bioinformatic prioritization for all the markers with P-values ⩽0.05 in both data sets. In this process, we found that in the CMYA5 gene, there were two non-synonymous markers, rs3828611 and rs10043986, showing nominal significance in both the CATIE and MGS-GAIN samples. In a combined analysis of both the CATIE and MGS-GAIN samples, rs4704591 was identified as the most significant marker in the gene. Linkage disequilibrium analyses indicated that these markers were in low LD (3 828 611–rs10043986, r2=0.008; rs10043986–rs4704591, r2=0.204). In addition, CMYA5 was reported to be physically interacting with the DTNBP1 gene, a promising candidate for schizophrenia, suggesting that CMYA5 may be involved in the same biological pathway and process. On the basis of this information, we performed replication studies for these three single-nucleotide polymorphisms. The rs3828611 was found to have conflicting results in our Irish samples and was dropped out without further investigation. The other two markers were verified in 23 other independent data sets. In a meta-analysis of all 23 replication samples (family samples, 912 families with 4160 subjects; case–control samples, 11 380 cases and 15 021 controls), we found that both markers are significantly associated with schizophrenia (rs10043986, odds ratio (OR)=1.11, 95% confidence interval (CI)=1.04–1.18, P=8.2 × 10−4 and rs4704591, OR=1.07, 95% CI=1.03–1.11, P=3.0 × 10−4). The results were also significant for the 22 Caucasian replication samples (rs10043986, OR=1.11, 95% CI=1.03–1.17, P=0.0026 and rs4704591, OR=1.07, 95% CI=1.02–1.11, P=0.0015). Furthermore, haplotype conditioned analyses indicated that the association signals observed at these two markers are independent. On the basis of these results, we concluded that CMYA5 is associated with schizophrenia and further investigation of the gene is warranted.


American Journal of Medical Genetics | 2000

Long Repeat Tracts at SCA8 in Major Psychosis

John B. Vincent; Qiu-Ping Yuan; Martin Schalling; Rolf Adolfsson; M. Helena Azevedo; António Macedo; Amy Bauer; Camille DallaTorre; Helena Medeiros; Michele T. Pato; Carlos N. Pato; Timothy Bowen; Carol Guy; Michael John Owen; Michael Conlon O'Donovan; Andrew D. Paterson; Arturas Petronis; James L. Kennedy

Expansion at a recently identified unstable trinucleotide repeat on chromosome 13q21 has been reported as the molecular cause for spinocerebellar ataxia type 8 (SCA8). The trinucleotide repeat, which consists of a [CTA]n repeat and adjacent [CTG]n repeat, was reported to have a pathogenic range of 107-127 CTG repeats (or 110-130 combined CTA and CTG repeats) in a large ataxia kindred. This repeat region was also cloned by our group from a bipolar affective disorder (BPAD) patient, who has approximately 600 combined repeats, and large alleles (>100 repeats) were reported to be present in 0.7% of controls and 1.5% of major psychosis patients (n = 710 and n = 1,120, respectively). We have followed up these findings by screening three new samples of BPAD and schizophrenia (SCZ) patients and controls, including 272 individuals from 14 BPAD families from Sweden, 130 individuals from 32 SCZ and BPAD families/trios from the Azores Islands, and 206 SCZ individuals from the United Kingdom and Ireland, and 219 matched controls. We found large repeat alleles above the SCA8 pathogenic range in individuals from 3 of 32 Azorean pedigrees and in 1 of 206 SCZ individuals from the United Kingdom, and repeat alleles within the SCA8 pathogenic range in 1 of 14 Swedish families. Although the rarity of major psychosis patients carrying the SCA8 expansion mutation would require a much larger sample size to reach statistical significance, these results support the previously reported observation of increased occurrence of large repeats at SCA8 in major psychosis. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:873-876, 2000.

Collaboration


Dive into the António Macedo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Bos

University of Coimbra

View shared research outputs
Top Co-Authors

Avatar

B. Maia

University of Coimbra

View shared research outputs
Top Co-Authors

Avatar

Carlos N. Pato

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michele T. Pato

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge