Antonio Machì
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Machì.
Annales de l'Institut Fourier | 1999
Tullio Ceccherini-Silberstein; Antonio Machì; Fabio Scarabotti
© Annales de l’institut Fourier, 1999, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Theoretical Computer Science | 2003
Tullio Ceccherini-Silberstein; Antonio Machì; Fabio Scarabotti
Let L be an irreducible regular language. Let W be a non-empty set of words (or sub-words) of L and denote by LW = {v ∈ L:w ⊏ v, ∀w ∈ W} the language obtained from L by forbidding all the words w in W. Then the entropy decreases strictly: ent(LW) < ent(L). In this note we present a new proof of this fact, based on a method of Gromov, which avoids the Perron-Frobenius theory. This result applies to the regular languages of finitely generated free groups and an additional application is presented.
Rendiconti Del Circolo Matematico Di Palermo | 2001
Tullio Ceccherini-Silberstein; Antonio Machì; Fabio Scarabotti
An explicit description of the 2-group of intermediate growth found by Grigorchuk is given. We also give a few preliminary notions concerning finitely generated groups and their growth functions.
Archive | 2012
Antonio Machì
We recall that the subgroup 〈S〉 of a group G generated by a set S of elements of G is the set of all products
Archive | 2012
Antonio Machì
a −1 b and ba −1 solve the two equations. Conversely, if ax = a has a solution, then there exists e r such that ae r = a; if b ∈ G, then b = ya, some y, and therefore be r = (ya) e r = y(ae) r = ya = b; hence e r is neutral on the right for all b ∈ G, and similarly there exists e l , neutral on the left. Multiplication of the two gives e l e r = e l , e l e r = e r , and ii) follows. As for iii), solving ax = e and ya = e, if ax = az we have y(ax) = y(az) from which (ya)x = (ya)z, i.e. ex = ez and x = z; hence the right inverse is unique, and so is the left inverse. If ax = e, then xa = exa = yaxa = y(ax)a = yea = ya = e and ax = e = xa.
Archive | 2012
Antonio Machì
There are two important properties of groups that are stronger than commutativity: they are solvability and nilpotence. Solvable1 groups are obtained by forming successive extensions of abelian groups; nilpotent groups lie midway between abelian and solvable groups.
Archive | 2012
Antonio Machì
Let m be an arbitrary integer number (positive, negative or zero), n a positive integer, and let
Archive | 2012
Antonio Machì
Archive | 2012
Antonio Machì
\dots, \hbox{---} kn, ...,\hbox{---} 2n,\hbox{---} n,0,n,2n,\dots, kn, ...
Archive | 2012
Antonio Machì