Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Mura is active.

Publication


Featured researches published by Antonio Mura.


Journal of Vibration and Control | 2008

Time-Fractional Diffusion of Distributed Order

Francesco Mainardi; Antonio Mura; Gianni Pagnini; Rudolf Gorenflo

The partial differential equation of Gaussian diffusion is generalized by using the time-fractional derivative of distributed order between 0 and 1, in both the Riemann-Liouville and the Caputo sense. For a general distribution of time orders we provide the fundamental solution, which is a probability density, in terms of an integral of Laplace type. The kernel depends on the type of the assumed fractional derivative, except for the single order case where the two approaches turn out to be equivalent. We consider in some detail two cases of order distribution: Double-order, and uniformly distributed order. Plots of the corresponding fundamental solutions and their variance are provided for these cases, pointing out the remarkable difference between the two approaches for small and large times.


International Journal of Differential Equations | 2010

The -Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey

Francesco Mainardi; Antonio Mura; Gianni Pagnini

In the present review we survey the properties of a transcendental function of the Wright type, nowadays known as 𝑀-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes that we generally refer to as time-fractional diffusion processes. Indeed, the master equations governing these processes generalize the standard diffusion equation by means of time-integral operators interpreted as derivatives of fractional order. When these generalized diffusion processes are properly characterized with stationary increments, the 𝑀-Wright function is shown to play the same key role as the Gaussian density in the standard and fractional Brownian motions. Furthermore, these processes provide stochastic models suitable for describing phenomena of anomalous diffusion of both slow and fast types.


Journal of Vibration and Control | 2007

The Two Forms of Fractional Relaxation of Distributed Order

Francesco Mainardi; Antonio Mura; Rudolf Gorenflo; Mirjana Stojanović

The first-order differential equation of exponential relaxation can be generalized by using either the fractional derivative in the Riemann—Liouville (R-L) sense and in the Caputo (C) sense, both of a single order less than 1. The two forms turn out to be equivalent. When, however, we use fractional derivatives of distributed order (between zero and 1), the equivalence is lost, in particular on the asymptotic behaviour of the fundamental solution at small and large times. We give an outline of the theory providing the general form of the solution in terms of an integral of Laplace type over a positive measure depending on the order-distribution. We consider in some detail two cases of fractional relaxation of distribution order: the double-order and the uniformly distributed order discussing the differences between the R-L and C approaches. For all the cases considered we give plots of the solutions for moderate and large times.


Journal of Physics A | 2008

Characterizations and simulations of a class of stochastic processes to model anomalous diffusion

Antonio Mura; Gianni Pagnini

In this paper, we study a parametric class of stochastic processes to model both fast and slow anomalous diffusions. This class, called generalized grey Brownian motion (ggBm), is made up of self-similar with stationary increments processes (H-sssi) and depends on two real parameters α ∈ (0, 2) and β ∈ (0, 1]. It includes fractional Brownian motion when α ∈ (0, 2) and β = 1, and time-fractional diffusion stochastic processes when α = β ∈ (0, 1). The latter have a marginal probability density function governed by timefractional diffusion equations of order β. The ggBm is defined through the explicit construction of the underlying probability space. However, in this paper we show that it is possible to define it in an unspecified probability space. For this purpose, we write down explicitly all the finite-dimensional probability density functions. Moreover, we provide different ggBm characterizations. The role of theM-Wright function, which is related to the fundamental solution of the time-fractional diffusion equation, emerges as a natural generalization of the Gaussian distribution. Furthermore, we show that the ggBm can be represented in terms of the product of a random variable, which is related to the M-Wright function, and an independent fractional Brownian motion. This representation highlights the H-sssi nature of the ggBm and provides a way to study and simulate the trajectories. For this purpose, we developed a random walk model based on a finite difference approximation of a partial integro-differential equation of a fractional type.


Integral Transforms and Special Functions | 2009

A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics

Antonio Mura; Francesco Mainardi

In this paper, we present a general mathematical construction that allows us to define a parametric class of H-sssi stochastic processes (self-similar with stationary increments), which have marginal probability density function that evolves in time according to a partial integro-differential equation of fractional type. This construction is based on the theory of finite measures on functional spaces. Since the variance evolves in time as a power function, these H-sssi processes naturally provide models for slow- and fast-anomalous diffusion. Such a class includes, as particular cases, fractional Brownian motion, grey Brownian motion and Brownian motion.


Physica A-statistical Mechanics and Its Applications | 2008

Non-Markovian diffusion equations and processes: Analysis and simulations

Antonio Mura; Murad S. Taqqu; Francesco Mainardi

In this paper we introduce and analyze a class of diffusion type equations related to certain non-Markovian stochastic processes. We start from the forward drift equation which is made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation can be interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker–Planck equation which involves the memory kernel K(t). We develop several applications and derive the exact solutions. We consider different stochastic models for the given equations providing path simulations.


Archive | 2007

Sub-diffusion equations of fractional order and their fundamental solutions

Francesco Mainardi; Antonio Mura; Gianni Pagnini; Rudolf Gorenflo; E. Clementel

The time-fractional diffusion equation is obtained by generalizing the standard diffusion equation by using a proper time-fractional derivative of order 1 — β in the Riemann-Liouville (R-L) sense or of order β in the Caputo (C) sense, with β ∈ (0, 1). The two forms are equivalent and the fundamental solution of the associated Cauchy problem is interpreted as a probability density of a self-similar non-Markovian stochastic process, related to a phenomenon of sub- diffusion (the variance grows in time sub-linearly). A further generalization is obtained by considering a continuous or discrete distribution of fractional time-derivatives of order less than one. Then the two forms are no longer equivalent. However, the fundamental solution still is a probability density of a non-Markovian process but one exhibiting a distribution of time-scales instead of being self-similar: it is expressed in terms of an integral of Laplace type suitable for numerical computation. We consider with some detail two cases of diffusion of distributed order: the double order and the uniformly distributed order discussing the differences between the R-L and C approaches. For these cases we analyze in detail the behaviour of the fundamental solutions (numerically computed) and of the corresponding variance (analytically computed) through the exhibition of several plots. While for the R-L and for the C cases the fundamental solutions seem not to differ too much for moderate times, the behaviour of the corresponding variance for small and large times differs in a remarkable way.


International Journal of Stochastic Analysis | 2012

Generalized Fractional Master Equation for Self-Similar Stochastic Processes Modelling Anomalous Diffusion

Gianni Pagnini; Antonio Mura; Francesco Mainardi

The Master Equation approach to model anomalous diffusion is considered. Anomalous diffusion in complex media can be described as the result of a superposition mechanism reflecting inhomogeneity and nonstationarity properties of the medium. For instance, when this superposition is applied to the time-fractional diffusion process, the resulting Master Equation emerges to be the governing equation of the Erdelyi-Kober fractional diffusion, that describes the evolution of the marginal distribution of the so-called generalized grey Brownian motion. This motion is a parametric class of stochastic processes that provides models for both fast and slow anomalous diffusion: it is made up of self-similar processes with stationary increments and depends on two real parameters. The class includes the fractional Brownian motion, the time-fractional diffusion stochastic processes, and the standard Brownian motion. In this framework, the M-Wright function (known also as Mainardi function) emerges as a natural generalization of the Gaussian distribution, recovering the same key role of the Gaussian density for the standard and the fractional Brownian motion.


Philosophical Transactions of the Royal Society A | 2013

Two-particle anomalous diffusion: probability density functions and self-similar stochastic processes.

Gianni Pagnini; Antonio Mura; Francesco Mainardi

Two-particle dispersion is investigated in the context of anomalous diffusion. Two different modelling approaches related to time subordination are considered and unified in the framework of self-similar stochastic processes. By assuming a single-particle fractional Brownian motion and that the two-particle correlation function decreases in time with a power law, the particle relative separation density is computed for the cases with time sub-ordination directed by a unilateral M-Wright density and by an extremal Lévy stable density. Looking for advisable mathematical properties (for instance, the stationarity of the increments), the corresponding self-similar stochastic processes are represented in terms of fractional Brownian motions with stochastic variance, whose profile is modelled by using the M-Wright density or the Lévy stable density.


IFAC Proceedings Volumes | 2006

FRACTIONAL CALCULUS AND THE SCHRÖDINGER EQUATION

Enrico Scalas; Dumitru Baleanu; Francesco Mainardi; Antonio Mura

Abstract In this paper, a derivation of the fractional Schrodinger equation is presented for the simple case of a pure diffusive process with dissipation. The Gaussian white noise is replaced by more general kinds of white noise and both the Markovian both the Markovian (β = 1) and non-Markovian case (0

Collaboration


Dive into the Antonio Mura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Gorenflo

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge