Antonio Ordóñez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Ordóñez.
Cardiovascular Research | 2009
Eva Calderón-Sánchez; Carmen Delgado; Gema Ruiz-Hurtado; Alejandro Domínguez-Rodríguez; Victoria Cachofeiro; María Rodríguez-Moyano; Ana M. Gómez; Antonio Ordóñez; Tarik Smani
AIMS The aim of this study is to evaluate the positive inotropic effect of urocortin (Ucn) and to characterize its signalling pathways. METHODS AND RESULTS Contractility was measured in ex vivo Langendorff-perfused hearts isolated from Wistar rats. Isolated ventricular cardiomyocytes were used to analyse intracellular calcium ([Ca(2+)](i)) transients evoked by electrical stimulation and L-type Ca(2+) current by confocal microscopy and whole-cell patch-clamping, respectively. The application of Ucn to perfused hearts induced progressive, sustained, and potent inotropic and lusitropic effects that were dose-dependent with an EC(50) of approximately 8 nM. Ucn effects were independent of protein kinase A (PKA) activation but were significantly reduced by protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) inhibitors and by brefeldin A, an antagonist of guanine nucleotide exchange factor, suggested to be an inhibitor of exchange protein activated by cAMP (Epac). These whole-organ effects were correlated with the inotropic effects observed in isolated cells: Ucn increased I(CaL) density, [Ca(2+)](i) transients, cell shortening and Ca(2+) content of sarcoplasmic reticulum. CONCLUSION Our results show that Ucn evokes potent positive inotropic and lusitropic effects mediated, at least in part, by an increase in I(CaL) and [Ca(2+)](i) transient amplitude. These effects may involve the activation of Epac, PKC, and MAPK signalling pathways.
The Journal of Physiology | 2013
Patricia Ortega-Sáenz; Ricardo Pardal; Konstantin L. Levitsky; Javier Villadiego; Ana B. Muñoz-Manchado; Rocío Durán; Victoria Bonilla-Henao; Ignacio Arias-Mayenco; Verónica Sobrino; Antonio Ordóñez; María Oliver; Juan José Toledo-Aral; José López-Barneo
• The carotid body (CB) is a key chemoreceptor organ that mediates the hyperventilatory response to hypoxia, and contributes to the process of acclimatisation to chronic hypoxaemia. • Knowledge of CB physiology at the cellular and molecular levels has advanced considerably in recent times thanks to studies on lower mammals; however, information on humans is practically absent. Here we describe the properties of human CB cells in slice preparations or after enzymatic dispersion. • Besides glomus (type I) and glia‐like, sustentacular (type II) cells, adult human CBs contain nestin‐positive neural progenitor cells. The human CB also expresses high levels of glial cell line‐derived neurotrophic factor. These properties are maintained at an advanced age. • Human glomus cells contain a relatively high density of voltage‐dependent Na+, Ca2+ and K+ channels. Membrane depolarisation with high extracellular K+ induces an increase of cytosolic [Ca2+] and quantal catecholamine release. • Human glomus cells are responsive to hypoxia and hypoglycaemia, both of which induce an increase in cytosolic [Ca2+] and transmitter release. Chemosensory responses of glomus cells are also preserved at an advanced age. • These findings on the cellular and molecular physiology of the CB provide novel perspectives for the systematic study of pathologies involving this organ in humans.
Cardiovascular Research | 2009
Eva Calderón-Sánchez; Miguel Fernández-Tenorio; Antonio Ordóñez; José López-Barneo; Juan Ureña
AIMS We have previously described in rat basilar arterial myocytes that in the absence of extracellular Ca(2+) influx, activation of L-type Ca(2+) channels stimulates a metabotropic cascade leading to Ca(2+) release from the sarcoplasmic reticulum (SR) and contraction [a calcium channel-induced Ca(2+) release (CCICR) mechanism]. On the other hand, it is known that hypoxia reduces Ca(2+) channel activity in coronary myocytes. In the present study, we have investigated whether CCICR is present in coronary arterial myocytes and whether arterial ring contraction induced by CCICR can be inhibited by hypoxia. METHODS AND RESULTS Isometric force, arterial diameter, cytosolic [Ca(2+)] and electrical activity were recorded on mammalian (porcine, rat, and human) coronary artery preparations (dispersed myocytes, arterial rings, and intact arterial segments). In the absence of extracellular Ca(2+), Ca(2+) channel activation increased cytosolic [Ca(2+)] in isolated myocytes and contracted arterial rings. This contraction was suppressed by antagonists of L-type Ca(2+) channels and by inhibiting Ca(2+) release from the SR. Hypoxia induced dilatation of coronary arterial rings pre-contracted by activation of Ca(2+) channels in the absence of extracellular Ca(2+). This effect was present although K(ATP) channels and Rho kinase were blocked by glibenclamide and Y27632, respectively. CONCLUSION We show that Ca(2+) channel activation can induce metabotropic coronary arterial ring contraction in the absence of extracellular Ca(2+) and that this CCICR mechanism is inhibited by hypoxia. Thus, besides reduction of Ca(2+) entry through Ca(2+) channels, hypoxia seems to induce coronary vasorelaxation by inhibition of metabotropic CCICR.
Cell Calcium | 2011
Eva María Calderón-Sánchez; Gema Ruiz-Hurtado; Tarik Smani; Carmen Delgado; Jean Pierre Benitah; Ana M. Gómez; Antonio Ordóñez
Ischemia/reperfusion (I/R) damage in the heart occurs mainly during the first minutes of reperfusion. Urocortin (Ucn) is a member of the corticotrophin-releasing factor that has been identified as a potent endogenous cardioprotector peptide when used in pre- and postconditioning protocols. However, the underlying mechanisms are not completely elucidated. Here, we focused on intracellular calcium ([Ca(2+)](i)) handling by Ucn when applied in early reperfusion. We used Langendorff-perfused rat hearts to determine hemodynamic parameters, and confocal microscopy to study global [Ca(2+)](i) transients evoked by electrical stimulation in isolated cardiomyocytes loaded with fluorescence Ca(2+) dye fluo-3AM. We found that the acute application of Ucn at the onset of reperfusion, in isolated hearts submitted to ischemia, fully recovered the hearts contractility and relaxation. In isolated cardiac myocytes, following ischemia we observed that the diastolic [Ca(2+)](i) was increased, the systolic [Ca(2+)](i) transients amplitude were depressed and sarcoplasmic reticulum (SR) Ca(2+) load was reduced. These effects were correlated to a decrease in the Na(+)/Ca(2+) exchanger (NCX) activity. Importantly, Ucn applied at reperfusion produced a complete recovery in diastolic [Ca(2+)](i) and global [Ca(2+)](i) transient amplitude, which were due to NCX activity improvement. In conclusion, we demonstrated that [Ca(2+)](i) handling play an essential role in postconditioning action of Ucn.
Cardiovascular Research | 2012
Gema Ruiz-Hurtado; Nieves Gómez-Hurtado; María Fernández-Velasco; Eva Calderón; Tarik Smani; Antonio Ordóñez; Victoria Cachofeiro; Lisardo Boscá; Javier Díez; Ana M. Gómez; Carmen Delgado
AIMS Plasma levels of cardiotrophin-1 (CT-1) are elevated in several cardiovascular diseases and are correlated with the severity of the pathology. However, the mechanisms by which this inflammatory cytokine participates in the pathology of the heart are not completely understood. It is well established that alterations in intracellular calcium ([Ca(2+)](i)) handling are involved in cardiac dysfunction during heart failure, but it is unknown whether CT-1 modulates [Ca(2+)](i) handling in adult cardiomyocytes. Here we have analyzed for the first time the effects of CT-1 on [Ca(2+)](i) homeostasis in adult rat cardiomyocytes. METHODS AND RESULTS L-type calcium current (I(CaL)) was recorded using patch-clamp techniques, and [Ca(2+)](i) transients and Ca(2+) sparks were viewed by confocal microscopy. Treatment of cardiomyocytes with 1 nM CT-1 for 20-60 min induced a significant increase in I(CaL) density, [Ca(2+)](i) transients, and cell shortening compared with control cells. Our study reveals that CT-1 increases I(CaL) by a protein kinase A-dependent mechanism, and Ca(2+) sparks by a Ca(2+)/calmodulin kinase II-dependent and protein kinase A-independent mechanism. Cardiomyocytes treated with CT-1 exhibited a higher occurrence of arrhythmogenic behaviour, manifested as spontaneous Ca(2+) waves and aftercontractions. CONCLUSION Our findings provide evidence that cardiomyocytes treated with CT-1 present high spontaneous Ca(2+) release during diastole, a mechanism linked to arrhythmogenicity in the pathologic heart.
PLOS ONE | 2016
Eva Calderón-Sánchez; I. Díaz; Antonio Ordóñez; Tarik Smani
Aims Urocortin-1 (Ucn-1) is an endogenous peptide that protects heart from ischemia and reperfusion (I/R) injuries. Ucn-1 is known to prevent cardiac cell death, but its role in the transcription of specific genes related to survival signaling pathway has not been fully defined. The aim of this study was to investigate the molecular signaling implicated in the improvement of cardiac myocytes survival induced by Ucn-1. Methods and Results Ucn-1 administration before ischemia and at the onset of reperfusion, in rat hearts perfused in Langendorff system, fully recovered heart contractility and other hemodynamic parameters. Ucn-1 enhanced cell viability and decreased lactate dehydrogenase (LDH) release in adult cardiac myocytes subjected to simulated I/R. Annexin V-FITC/PI staining indicated that Ucn-1 promoted cell survival and decreased cell necrosis through Epac2 (exchange protein directly activated by cAMP) and ERK1/2 (extracellular signal–regulated kinases 1/2) activation. We determined that Ucn-1 shifted cell death from necrosis to apoptosis and activated caspases 9 and 3/7. Furthermore, mini-array, RT-qPCR and protein analyses of apoptotic genes showed that Ucn-1 upregulated the expression of CD40lg, Xiap and BAD in cells undergoing I/R, involving Epac2 and ERK1/2 activation. Conclusions Our data indicate that Ucn-1 efficiently protected hearts from I/R damage by increasing the cell survival and stimulated apoptotic genes, CD40lg, Xiap and BAD, overexpression through the activation of Epac2 and ERK1/2.
PLOS ONE | 2011
María Eugenia Sáez; Tarik Smani; Reposo Ramírez-Lorca; I. Díaz; Manuel Serrano-Ríos; Agustín Ruiz; Antonio Ordóñez
Background Urotensin II (UII) is a potent vasoconstrictor peptide, which signals through a G-protein coupled receptor (GPCR) known as GPR14 or urotensin receptor (UTR). UII exerts a broad spectrum of actions in several systems such as vascular cell, heart muscle or pancreas, where it inhibits insulin release. Objective Given the reported role of UII in insulin secretion, we have performed a genetic association analysis of the UTS2 gene and flanking regions with biochemical parameters related to insulin resistance (fasting glucose, glucose 2 hours after a glucose overload, fasting insulin and insulin resistance estimated as HOMA). Results and Conclusions We have identified several polymorphisms associated with the analysed clinical traits, not only at the UTS2 gene, but also in thePER3 gene, located upstream from UTS2. Our results are compatible with a role for UII in glucose homeostasis and diabetes although we cannot rule out the possibility that PER3 gene may underlie the reported associations.
Human Molecular Genetics | 2017
Marian Blanca Ramírez; Antonio Ordóñez; Elena Fdez; Jesús Madero-Pérez; Adriano Gonnelli; Matthieu Drouyer; Marie-Christine Chartier-Harlin; Jean-Marc Taymans; Luigi Bubacco; Elisa Greggio; Sabine Hilfiker
Abstract Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinsons disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown. Here, we report that most pathogenic LRRK2 mutants cause relocalization of LRRK2 to filamentous structures which colocalize with a subset of MTs, and an identical relocalization is seen upon pharmacological LRRK2 kinase inhibition. The pronounced colocalization with MTs does not correlate with alterations in LRRK2 kinase activity, but rather with increased GTP binding. Synthetic mutations which impair GTP binding, as well as LRRK2 GTP-binding inhibitors profoundly interfere with the abnormal localization of both pathogenic mutant as well as kinase-inhibited LRRK2. Conversely, addition of a non-hydrolyzable GTP analog to permeabilized cells enhances the association of pathogenic or kinase-inhibited LRRK2 with MTs. Our data elucidate the mechanism underlying the increased MT association of select pathogenic LRRK2 mutants or of pharmacologically kinase-inhibited LRRK2, with implications for downstream MT-mediated transport events.
Nature Communications | 2016
Raquel del Toro; Raphael Chèvre; Cristina Rodríguez; Antonio Ordóñez; José Martínez-González; Vicente Andrés; Simón Méndez-Ferrer
Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin+ cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin+ cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin+ cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin+ cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin+ stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin+ cells—but not in endothelial cells only— increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis.
Journal of Biological Chemistry | 2016
Javier Ávila-Medina; Eva Calderón-Sánchez; Patricia González-Rodríguez; Francisco Monje-Quiroga; Juan A. Rosado; Antonio Castellano; Antonio Ordóñez; Tarik Smani
Voltage-dependent CaV1.2 L-type Ca2+ channels (LTCC) are the main route for calcium entry in vascular smooth muscle cells (VSMC). Several studies have also determined the relevant role of store-operated Ca2+ channels (SOCC) in vascular tone regulation. Nevertheless, the role of Orai1- and TRPC1-dependent SOCC in vascular tone regulation and their possible interaction with CaV1.2 are still unknown. The current study sought to characterize the co-activation of SOCC and LTCC upon stimulation by agonists, and to determine the possible crosstalk between Orai1, TRPC1, and CaV1.2. Aorta rings and isolated VSMC obtained from wild type or smooth muscle-selective conditional CaV1.2 knock-out (CaV1.2KO) mice were used to study vascular contractility, intracellular Ca2+ mobilization, and distribution of ion channels. We found that serotonin (5-HT) or store depletion with thapsigargin (TG) enhanced intracellular free Ca2+ concentration ([Ca2+]i) and stimulated aorta contraction. These responses were sensitive to LTCC and SOCC inhibitors. Also, 5-HT- and TG-induced responses were significantly attenuated in CaV1.2KO mice. Furthermore, hyperpolarization induced with cromakalim or valinomycin significantly reduced both 5-HT and TG responses, whereas these responses were enhanced with LTCC agonist Bay-K-8644. Interestingly, in situ proximity ligation assay revealed that CaV1.2 interacts with Orai1 and TRPC1 in untreated VSMC. These interactions enhanced significantly after stimulation of cells with 5-HT and TG. Therefore, these data indicate for the first time a functional interaction between Orai1, TRPC1, and CaV1.2 channels in VSMC, confirming that upon agonist stimulation, vessel contraction involves Ca2+ entry due to co-activation of Orai1- and TRPC1-dependent SOCC and LTCC.