António Pagarete
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by António Pagarete.
Genome Research | 2009
Adam Monier; António Pagarete; C. de Vargas; Michael J. Allen; Betsy A. Read; Jean-Michel Claverie; Hiroyuki Ogata
Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton-virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival.
Applied and Environmental Microbiology | 2013
António Pagarete; C.-E. T. Chow; Torill Vik Johannessen; Jed A. Fuhrman; T. F. Thingstad; Ruth-Anne Sandaa
ABSTRACT The temporal community dynamics and persistence of different viral types in the marine environment are still mostly obscure. Polymorphism of the major capsid protein gene, g23, was used to investigate the community composition dynamics of T4-like myoviruses in a North Atlantic fjord for a period of 2 years. A total of 160 unique operational taxonomic units (OTUs) were identified by terminal restriction fragment length polymorphism (TRFLP) of the gene g23. Three major community profiles were identified (winter-spring, summer, and autumn), which resulted in a clear seasonal succession pattern. These seasonal transitions were recurrent over the 2 years and significantly correlated with progression of seawater temperature, Synechococcus abundance, and turbidity. The appearance of the autumn viral communities was concomitant with the occurrence of prominent Synechococcus blooms. As a whole, we found a highly dynamic T4-like viral community with strong seasonality and recurrence patterns. These communities were unexpectedly dominated by a group of persistently abundant viruses.
Genome Announcements | 2015
Lucie Gallot-Lavallée; António Pagarete; Matthieu Legendre; Sébastien Santini; Ruth-Anne Sandaa; Heinz Himmelbauer; Hiroyuki Ogata; Gunnar Bratbak; Jean-Michel Claverie
ABSTRACT We report the complete genome sequence of CeV-01B, a large double-stranded DNA virus infecting the unicellular marine phytoplankton Haptolina (formerly Chrysochromulina) ericina. CeV-01B and its closest relative Phaeocystis globosa virus define an emerging subclade of the Megaviridae family with smaller genomes and particles than the originally described giant Mimiviridae infecting Acanthamoeba.
Intervirology | 2013
António Pagarete; Anders Lanzén; Pål Puntervoll; Ruth-Anne Sandaa; Aud Larsen; J. B. Larsen; Michael J. Allen; Gunnar Bratbak
Coccolithoviruses are giant dsDNA viruses that infect Emiliania huxleyi, the most ubiquitous marine microalga. Here, we present the genome of the latest coccolithovirus strain to be sequenced, EhV-99B1, and compare it with two other coccolithovirus genomes (EhV-86 and EhV-163). EhV-99B1 shares a pairwise nucleotide identity of 98% with EhV-163 (the two strains were isolated from the same Norwegian fjord but in different years), and just 96.5% with EhV-86 (isolated in the same spring as EhV-99B1 but in the English Channel). We confirmed and extended the list of relevant genomic differences between these EhVs from the Norwegian fjord and EhVs from the English Channel, namely the removal/insertions of: a phosphate permease, an endonuclease, a transposase, and two specific tRNAs. As a whole, this study provided new clues and insights into the diversity and mechanisms driving the evolution of these large oceanic viruses, in particular those processes involving selfish genetic elements.
Viruses | 2015
António Pagarete; Olga Stepanova; Ruth-Anne Sandaa; Gunnar Bratbak
Numbering in excess of 10 million per milliliter of water, it is now undisputed that aquatic viruses are one of the major factors shaping the ecology and evolution of Earth’s microbial world. Nonetheless, environmental viral diversity and roles remain poorly understood. Here we report the first thorough characterization of a virus (designated TsV) that infects the coastal marine microalga Tetraselmis striata. Unlike previously known microalgae-infecting viruses, TsV is a small (60 nm) DNA virus, with a 31 kb genome. From a range of eight different strains belonging to the Chlamydomonadaceae family, TsV was only able to infect T. striata. Gene expression dynamics revealed an up-regulation of viral transcripts already 1 h post-infection (p.i.). First clear signs of infection were observed 24 h p.i., with the appearance of viral factories inside the nucleus. TsV assembly was exclusively nuclear. TsV-N1 genome revealed very different from previously known algae viruses (Phycodnaviridae). Putative function and/or homology could be resolved for only 9 of the 33 ORFs encoded. Among those was a surprising DNA polymerase type Delta (only found in Eukaryotes), and two genes with closest homology to genes from human parasites of the urogenital tract. These results support the idea that the diversity of microalgae viruses goes far beyond the Phycodnaviridae family and leave the door open for future studies on implications of microalgae viruses for human health.
Viruses | 2017
Torill Vik Johannessen; Aud Larsen; Gunnar Bratbak; António Pagarete; Bente Edvardsen; Elianne Egge; Ruth-Anne Sandaa
Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host–virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.
Viruses | 2017
Jozef I. Nissimov; António Pagarete; Fangrui Ma; Sean Cody; David D. Dunigan; Susan A. Kimmance; Michael J. Allen
Coccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed an in-depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene-by-gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain “Best BLAST hit” analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter-crosses the domains of life.
Virology | 2014
António Pagarete; Kanthida Kusonmano; Kjell Petersen; Susan A. Kimmance; Joaquín Martínez Martínez; William H. Wilson; Jan-Hendrik Hehemann; Michael J. Allen; Ruth-Anne Sandaa
Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.
Viruses | 2017
Eliana Ruiz; Monique Oosterhof; Ruth-Anne Sandaa; Aud Larsen; António Pagarete
Viruses are thought to be fundamental in driving microbial diversity in the oceanic planktonic realm. That role and associated emerging infection patterns remain particularly elusive for eukaryotic phytoplankton and their viruses. Here we used a vast number of strains from the model system Emiliania huxleyi/Emiliania huxleyi Virus to quantify parameters such as growth rate (µ), resistance (R), and viral production (Vp) capacities. Algal and viral abundances were monitored by flow cytometry during 72-h incubation experiments. The results pointed out higher viral production capacity in generalist EhV strains, and the virus-host infection network showed a strong co-evolution pattern between E. huxleyi and EhV populations. The existence of a trade-off between resistance and growth capacities was not confirmed.
Viruses | 2017
Eliana Ruiz; Monique Oosterhof; Ruth-Anne Sandaa; Aud Larsen; António Pagarete
n/a.