Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Picón is active.

Publication


Featured researches published by Antonio Picón.


New Journal of Physics | 2010

Transferring orbital and spin angular momenta of light to atoms

Antonio Picón; Albert Benseny; J. Mompart; J. R. Vázquez de Aldana; Luis Plaja; G F Calvo; Luis Roso

Light beams carrying orbital angular momentum (OAM), such as Laguerre–Gaussian (LG) beams, give rise to the violation of the standard dipolar selection rules during interaction with matter, yielding, in general, an exchange of angular momentum larger than per absorbed photon. By means of ab initio three-dimensional (3D) numerical simulations, we investigate in detail the interaction of a hydrogen atom with intense Gaussian and LG light pulses. We analyze the dependence of the angular momentum exchange with the polarization, the OAM and the carrier-envelope phase of light, as well as with the relative position between the atom and the light vortex. In addition, a quantum-trajectory approach based on the de Broglie–Bohm formulation of quantum mechanics is used to gain physical insight into the absorption of angular momentum by the hydrogen atom.


Physical Review Letters | 2013

Attosecond extreme ultraviolet vortices from high-order harmonic generation.

Carlos Hernandez-Garcia; Antonio Picón; San Román J; L. Plaja

We present a theoretical study of high-order harmonic generation (HHG) and propagation driven by an infrared field carrying orbital angular momentum (OAM). Our calculations unveil the following relevant phenomena: extreme-ultraviolet harmonic vortices are generated and survive to the propagation effects, vortices transport high-OAM multiples of the corresponding OAM of the driving field and, finally, the different harmonic vortices are emitted with similar divergence. We also show the possibility of combining OAM and HHG phase locking to produce attosecond pulses with helical pulse structure.


Optics Express | 2010

Photoionization with Orbital Angular Momentum Beams

Antonio Picón; J. R. Vázquez de Aldana; Luis Roso; G F Calvo; Luis Plaja; J. Mompart

Intense laser ionization expands Einsteins photoelectric effect rules giving a wealth of phenomena widely studied over the last decades. In all cases, so far, photons were assumed to carry one unit of angular momentum. However it is now clear that photons can possess extra angular momentum, the orbital angular momentum (OAM), related to their spatial profile. We show a complete description of photoionization by OAM photons, including new selection rules involving more than one unit of angular momentum. We explore theoretically the interaction of a single electron atom located at the center of an intense ultraviolet beam bearing OAM, envisaging new scenarios for quantum optics.


Journal of Modern Optics | 2013

X-ray quantum optics

Bernhard W. Adams; Christian Buth; Stefano M. Cavaletto; Jörg Evers; Zoltan Harman; Christoph H. Keitel; Adriana Pálffy; Antonio Picón; Ralf Röhlsberger; Yuri V. Rostovtsev; Kenji Tamasaku

Quantum optics with X-rays has long been a somewhat exotic activity, but it is now rapidly becoming relevant as precision x-ray optics and novel X-ray light sources, and high-intensity lasers are becoming available. This article gives an overview of the current state of the field and an outlook to future prospects.


Journal of the American Chemical Society | 2016

Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water

Dooshaye Moonshiram; Carolina Gimbert-Suriñach; Alexander A. Guda; Antonio Picón; C. Stefan Lehmann; Xiaoyi Zhang; Gilles Doumy; Anne Marie March; Jordi Benet-Buchholz; A. V. Soldatov; Antoni Llobet; Stephen H. Southworth

X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.


Optics Letters | 2007

Spin-induced angular momentum switching

Gabriel F. Calvo; Antonio Picón

When light is transmitted through optically inhomogeneous and anisotropic media the spatial distribution of light can be modified according to its input polarization state. A complete analysis of this process, based on the paraxial approximation, is presented, and we show how it can be exploited to produce a spin-controlled change in the orbital angular momentum of light beams propagating in patterned space-variant optical axis phase plates. We also unveil a new effect: the development of a strong modulation in the angular momentum change upon variation of the optical path through the phase plates.


Nature Communications | 2016

Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

Antonio Picón; C. S. Lehmann; Christoph Bostedt; Artem Rudenko; Agostino Marinelli; T. Osipov; Daniel Rolles; N. Berrah; C. Bomme; Maximilian Bucher; Gilles Doumy; Benjamin Erk; Ken R. Ferguson; Tais Gorkhover; Phay Ho; E. P. Kanter; B. Krässig; J. Krzywinski; Alberto Lutman; Anne Marie March; Dooshaye Moonshiram; D. Ray; L. Young; Stephen T. Pratt; S. H. Southworth

New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.


Journal of the American Chemical Society | 2017

Electronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets

Pablo Garrido-Barros; Carolina Gimbert-Suriñach; Dooshaye Moonshiram; Antonio Picón; Pere Monge; Victor S. Batista; Antoni Llobet

A molecular water oxidation catalyst based on the copper complex of general formula [(Lpy)CuII]2-, 22-, (Lpy is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)CuII]2- water oxidation catalyst, 12- (L is o-phenylenebis(oxamidate)). The catalytic performance of both catalysts has been comparatively studied in homogeneous phase and in heterogeneous phase by π-stacking anchorage to graphene-based electrodes. In the homogeneous system, the electronic perturbation provided by the pyrene functionality translates into a 150 mV lower overpotential for 22- with respect to 12- and an impressive increase in the kcat from 6 to 128 s-1. Upon anchorage, π-stacking interactions with the graphene sheets provide further π-delocalization that improves the catalytic performance of both catalysts. In this sense, 22- turned out to be the most active catalyst due to the double influence of both the pyrene and the graphene, displaying an overpotential of 538 mV, a kcat of 540 s-1 and producing more than 5300 TONs.


New Journal of Physics | 2015

Quantum-path signatures in attosecond helical beams driven by optical vortices

Carlos Hernandez-Garcia; J. San Román; L. Plaja; Antonio Picón

High-order harmonic generation (HHG) driven by beams carrying orbital angular momentum has been recently demonstrated as a unique process to generate spatio-temporal coherent extreme ultraviolet (XUV)/x-ray radiation with attosecond helical structure. We explore the details of the mapping of the driving vortex to its harmonic spectrum. In particular we show that the geometry of the harmonic vortices is complex, arising from the superposition of the contribution from the short and long quantum paths responsible of HHG. Transversal phase-matching and quantum path interferences provide an explanation of the dramatic changes in the XUV vortex structure generated at different relative positions of the target respect to the laser beam focus. Finally, we show how to take advantage of transversal phase-matching to select helical attosecond beams generated from short or long quantum paths, exhibiting positive or negative temporal chirp respectively.


Physical Review A | 2011

Two-center interferences in photoionization of a dissociating H2+ molecule

Antonio Picón; Alon Bahabad; Henry C. Kapteyn; Margaret M. Murnane; Andreas Becker

numerical simulations for the ionization yield as a function of the time delay between the two pulses exhibit characteristic oscillations due to interferences between the partial electron waves emerging from the two protons in the dissociating hydrogen molecular ion. We show that the photon energy of the pump pulse should be in resonance with the σg–σu transition and the pump pulse duration should not exceed 5 fs in order to generate a well-confined nuclear wave packet. The spreading of the nuclear wave packet during the dissociation is found to cause a decrease of the amplitudes of the oscillations as the time delay increases. We develop an analytical model to fit the oscillations and show how dynamic information about the nuclear wave packet, namely, velocity, mean internuclear distance, and spreading, can be retrieved from the oscillations. The predictions of the analytical model are tested well against the results of our numerical simulations.

Collaboration


Dive into the Antonio Picón's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Plaja

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Doumy

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Laura Rego

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Becker

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Linda Young

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Mompart

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge