Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Pizzuti is active.

Publication


Featured researches published by Antonio Pizzuti.


American Journal of Human Genetics | 2002

Grouping of Multiple-Lentigines/LEOPARD and Noonan Syndromes on the PTPN11 Gene

Maria Cristina Digilio; Emanuela Conti; Anna Sarkozy; Rita Mingarelli; Tania Dottorini; Bruno Marino; Antonio Pizzuti; Bruno Dallapiccola

Multiple-lentigines (ML)/LEOPARD (multiple lentigines, electrocardiographic-conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) syndrome is an autosomal dominant condition--characterized by lentigines and café au lait spots, facial anomalies, cardiac defects--that shares several clinical features with Noonan syndrome (NS). We screened nine patients with ML/LEOPARD syndrome (including a mother-daughter pair) and two children with NS who had multiple café au lait spots, for mutations in the NS gene, PTPN11, and found, in 10 of 11 patients, one of two new missense mutations, in exon 7 or exon 12. Both mutations affect the PTPN11 phosphotyrosine phosphatase domain, which is involved in <30% of the NS PTPN11 mutations. The study demonstrates that ML/LEOPARD syndrome and NS are allelic disorders. The detected mutations suggest that distinct molecular and pathogenetic mechanisms cause the peculiar cutaneous manifestations of the ML/LEOPARD-syndrome subtype of NS.


The Journal of Neuroscience | 2006

Additive Effects of Genetic Variation in Dopamine Regulating Genes on Working Memory Cortical Activity in Human Brain

Alessandro Bertolino; Giuseppe Blasi; Valeria Latorre; Valeria Rubino; Antonio Rampino; Lorenzo Sinibaldi; Grazia Caforio; Vittoria Petruzzella; Antonio Pizzuti; Tommaso Scarabino; Marcello Nardini; Daniel R. Weinberger; Bruno Dallapiccola

Functional polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) genes modulate dopamine inactivation, which is crucial for determining neuronal signal-to-noise ratios in prefrontal cortex during working memory. We show that the COMT Met158 allele and the DAT 3′ variable number of tandem repeat 10-repeat allele are independently associated in healthy humans with more focused neuronal activity (as measured with blood oxygen level-dependent functional magnetic resonance imaging) in the working memory cortical network, including the prefrontal cortex. Moreover, subjects homozygous for the COMT Met allele and the DAT 10-repeat allele have the most focused response, whereas the COMT Val and the DAT 9-repeat alleles have the least. These results demonstrate additive genetic effects of genes regulating dopamine signaling on specific neuronal networks subserving working memory.


American Journal of Human Genetics | 2006

Germline missense mutations affecting KRAS isoform B are associated with a severe noonan syndrome phenotype

Claudio Carta; Francesca Pantaleoni; Gianfranco Bocchinfuso; Lorenzo Stella; Isabella Vasta; Anna Sarkozy; Cristina Digilio; Antonio Palleschi; Antonio Pizzuti; Paola Grammatico; Giuseppe Zampino; Bruno Dallapiccola; Bruce D. Gelb; Marco Tartaglia

Noonan syndrome (NS) is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart disease, and multiple skeletal and hematologic defects. NS is an autosomal dominant trait and is genetically heterogeneous. Gain of function of SHP-2, a protein tyrosine phosphatase that positively modulates RAS signaling, is observed in nearly 50% of affected individuals. Here, we report the identification of heterozygous KRAS gene mutations in two subjects exhibiting a severe NS phenotype with features overlapping those of cardiofaciocutaneous and Costello syndromes. Both mutations were de novo and affected exon 6, which encodes the C-terminal portion of KRAS isoform B but does not contribute to KRAS isoform A. Structural analysis indicated that both substitutions (Val152Gly and Asp153Val) perturb the conformation of the guanine ring-binding pocket of the protein, predicting an increase in the guanine diphosphate/guanine triphosphate (GTP) dissociation rate that would favor GTP binding to the KRASB isoform and bypass the requirement for a guanine nucleotide exchange factor.


Journal of Immunology | 2007

Unravelling the Complexity of T Cell Abnormalities in Common Variable Immunodeficiency

Antonello Giovannetti; Marina Pierdominici; Francesca Mazzetta; Marco Marziali; Cristina Renzi; Anna Maria Mileo; Marco De Felice; Barbara Mora; Antonella Esposito; Rossella Carello; Antonio Pizzuti; Marco G. Paggi; Roberto Paganelli; Walter Malorni; Fernando Aiuti

We investigated several phenotypic and functional parameters of T cell-mediated immunity in a large series of common variable immunodeficiency (CVID) patients. We demonstrated that the vast majority of CVID patients presented multiple T cell abnormalities intimately related among them, the severity of which was reflected in a parallel loss of CD4+ naive T cells. A strong correlation between the number of CD4+ naive T cells and clinical features was observed, supporting the subgrouping of patients according to their number of naive CD4+ T lymphocytes. A reduced thymic output and disrupted CD4+ and CD8+ TCR repertoires paralleled the contraction of CD4+ naive T cell pools. The evaluation of activation markers and cytokine production indicated a strong T cell activation that was significantly related to the increased levels of T cell turnover and apoptosis. Finally, discrete genetic profiles could be demonstrated in groups of patients showing extremely diverse T cell subset composition and function. Naive CD4+ T cell levels were significantly associated with the switched memory B cell-based classification, although the concordance between the respective subgroups did not exceed 58.8%. In conclusion, our data highlight the key role played by the T cell compartment in the pathogenesis of CVID, pointing to the need to consider this aspect for classification of this disease.


Journal of Medical Genetics | 2003

Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes

Anna Sarkozy; Emanuela Conti; D. Seripa; M C Digilio; Nicoletta Grifone; Caterina Tandoi; V. M. Fazio; V. Di Ciommo; Bruno Marino; Antonio Pizzuti; Bruno Dallapiccola

Noonan syndrome (MIM 163950), an autosomal dominant disorder with an estimated prevalence of 1/1000–2500 at birth, is characterised by short stature, facial anomalies, pterygium colli, and congenital heart disease.1,2 Although pulmonary valve stenosis with dysplastic leaflets, hypertrophic cardiomyopathy, and atrial septal defects (ASD) are the most common congenital heart defects in Noonan syndrome,3 a broad spectrum of cardiac phenotypes has been recognised.2–6 About half the affected individuals have PTPN11 gene mutations.7–9 This gene, which maps to chromosome 12q22-qter,10 encodes for the human SH2 domain containing protein tyrosine phosphatase (SHP2).11 PTPN11 gene mutations have also been detected in multiple lentigines/LEOPARD syndrome (multiple lentigines, ECG conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth and sensorineural deafness; ML/LS, MIM 151100),12,13 in Noonan-like/multiple giant cell lesion syndrome (MIM 163955),8 in two families presumably affected by cardio-facio-cutaneous syndrome (CFCS, MIM 115150),14 but not in sporadic CFCS.15 The clinical and genetic heterogeneity of these disorders suggests a possible relation between different PTPN11 gene mutations and distinct clinical features. A genotype–phenotype correlation study in Noonan syndrome found an association between pulmonary stenosis and PTPN11 mutations.8 Our aim in this study was to screen a large cohort of patients with Noonan syndrome and ML/LS in order to expand the genotype–phenotype correlation analysis, with particular emphasis on cardiac diseases. ### Key points


Journal of Medical Genetics | 2005

Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors

Anna Sarkozy; Emanuela Conti; Neri C; Ralph B. D'Agostino; M C Digilio; Giorgia Esposito; Alessandra Toscano; Marino B; Antonio Pizzuti; Bruno Dallapiccola

Atrial septal defect (ASD) is a common cardiovascular malformation, affecting over 1 in 1000 live births, accounting for 10% of congenital heart defects (CHD).1 ASD refers to a communication between the right and left atria, anatomically classified into the deficient atrial septum structure. ASD ostium secundum (ASDos) is the prevalent defect, representing 85% of all ASDs.2 ASD may be isolated or associated with other CHDs, such as pulmonary valve stenosis (PVS), ventricular septal defect (VSD), or conduction defects. In addition, persistent left to right blood shunt may result in atrial and ventricular dysfunctions and atrial arrhythmias, in the absence of surgical or catheter based repair. The atrial septum is one of the cardiac structures most sensitive to environmental or genetic factors. Several lines of evidence have highlighted a role for different proteins and transcription factors in the septogenesis process;3 however, only two genes, encoding for the transcription factors NKX2.5 and GATA4, have been implicated so far in non-syndromic ASDs.4,5 Clinical and molecular analyses have shown that mutations in these two genes are responsible for ASDs in association with distinct cardiac features.4–15 Mutations in NKX2.5 , a member of the NK-2 class of homeobox genes, have been described in autosomal dominant ASDos with progressive atrioventricular (AV) block, and in 1–4% of sporadic ASD patients.4,6–12 Most of these mutations occur within the homeodomain, a critical protein domain that interacts specifically with DNA, and are associated with conduction anomalies. Low penetrance NKX2.5 gene mutations, mainly outside the homeodomain, have been found in 5% of patients with tetralogy of Fallot, and in a number of individuals with other CHDs and normal conduction.4,6,9–13 Recently, heterozygous mutations in the GATA4 zinc finger transcription factor gene have been identified in three families with …


Journal of Biological Chemistry | 2012

TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells

Claudia Colombrita; Elisa Onesto; Francesca Megiorni; Antonio Pizzuti; Francisco E. Baralle; Emanuele Buratti; Vincenzo Silani; Antonia Ratti

Background: The RNA-binding proteins TDP-43 and FUS form abnormal aggregates in patients with amyotrophic lateral sclerosis and frontotemporal lobar dementia. Results: We identified the mRNAs associated to these proteins in the cytoplasm of NSC-34 cells. Conclusion: TDP-43 and FUS recognize distinct transcripts and differently regulate their fate. Significance: Our results clarify TDP-43 and FUS role in neuronal metabolism and neurodegeneration. The RNA-binding proteins TDP-43 and FUS form abnormal cytoplasmic aggregates in affected tissues of patients with amyotrophic lateral sclerosis and frontotemporal lobar dementia. TDP-43 and FUS localize mainly in the nucleus where they regulate pre-mRNA splicing, but they are also involved in mRNA transport, stability, and translation. To better investigate their cytoplasmic activities, we applied an RNA immunoprecipitation and chip analysis to define the mRNAs associated to TDP-43 and FUS in the cytoplasmic ribonucleoprotein complexes from motoneuronal NSC-34 cells. We found that they bind different sets of mRNAs although converging on common cellular pathways. Bioinformatics analyses identified the (UG)n consensus motif in 80% of 3′-UTR sequences of TDP-43 targets, whereas for FUS the binding motif was less evident. By in vitro assays we validated binding to selected target 3′-UTRs, including Vegfa and Grn for TDP-43, and Vps54, Nvl, and Taf15 for FUS. We showed that TDP-43 has a destabilizing activity on Vegfa and Grn mRNAs and may ultimately affect progranulin protein content, whereas FUS does not affect mRNA stability/translation of its targets. We also demonstrated that three different point mutations in TDP-43 did not change the binding affinity for Vegfa and Grn mRNAs or their protein level. Our data indicate that TDP-43 and FUS recognize distinct sets of mRNAs and differently regulate their fate in the cytoplasm of motoneuron-like cells, therefore suggesting complementary roles in neuronal RNA metabolism and neurodegeneration.


American Journal of Human Genetics | 2005

NF1 Gene Mutations Represent the Major Molecular Event Underlying Neurofibromatosis-Noonan Syndrome

Alessandro De Luca; Irene Bottillo; Anna Sarkozy; Claudio Carta; Cinzia Neri; Emanuele Bellacchio; Annalisa Schirinzi; Emanuela Conti; Giuseppe Zampino; Agatino Battaglia; Silvia Majore; Maria M. Rinaldi; Massimo Carella; Bruno Marino; Antonio Pizzuti; Maria Cristina Digilio; Marco Tartaglia; Bruno Dallapiccola

Neurofibromatosis type 1 (NF1) demonstrates phenotypic overlap with Noonan syndrome (NS) in some patients, which results in the so-called neurofibromatosis-Noonan syndrome (NFNS). From a genetic point of view, NFNS is a poorly understood condition, and controversy remains as to whether it represents a variable manifestation of either NF1 or NS or is a distinct clinical entity. To answer this question, we screened a cohort with clinically well-characterized NFNS for mutations in the entire coding sequence of the NF1 and PTPN11 genes. Heterozygous NF1 defects were identified in 16 of the 17 unrelated subjects included in the study, which provides evidence that mutations in NF1 represent the major molecular event underlying this condition. Lesions included nonsense mutations, out-of-frame deletions, missense changes, small inframe deletions, and one large multiexon deletion. Remarkably, a high prevalence of inframe defects affecting exons 24 and 25, which encode a portion of the GAP-related domain of the protein, was observed. On the other hand, no defect in PTPN11 was observed, and no lesion affecting exons 11-27 of the NF1 gene was identified in 100 PTPN11 mutation-negative subjects with NS, which provides further evidence that NFNS and NS are genetically distinct disorders. These results support the view that NFNS represents a variant of NF1 and is caused by mutations of the NF1 gene, some of which have been demonstrated to cause classic NF1 in other individuals.


Journal of Medical Genetics | 2004

Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome

Anna Sarkozy; Emanuela Conti; M Cristina Digilio; Bonnie Marino; E Morini; G Pacileo; M Wilson; R Calabrò; Antonio Pizzuti; Bruno Dallapiccola

Multiple lentigines LEOPARD syndrome (MIM 151100) is an autosomal dominant multiple congenital anomaly syndrome, with high penetrance and markedly variable expression.1 The acronym LEOPARD was coined by Gorlin et al. in 1971 as a mnemonic of the major features of this disorder: multiple l entigines, E CG conduction abnormalities, o cular hypertelorism, p ulmonic stenosis, a bnormal genitalia, r etardation of growth, and sensorineural d eafness.2 It is also known as cardiocutaneous syndrome, Moynahan syndrome, lentiginosis profuse, and progressive cardiomyopathic lentiginosis.3,4 Voron et al. proposed some diagnostic criteria for multiple lentigines LEOPARD syndrome.5 More than 100 cases have been described, and one review has been published.5,6 Multiple lentigines LEOPARD syndrome shares many features with Noonan syndrome (MIM 163950),7–9 in which lentigines and deafness usually are not present. About 40% of patients with Noonan syndrome have missense mutations in the PTPN11 gene, which encodes for the protein tyrosine phosphatase SHP2.10–14 Multiple lentigines LEOPARD syndrome has proved to be allelic to Noonan syndrome,15,16 with two recurrent PTPN11 mutations in exons 7 (Tyr279Cys) and 12 (Thr468Met). Recently, we reported a novel PTPN11 mutation (Gln506Pro) in a unique patient with multiple lentigines LEOPARD syndrome, which suggests that mutations other than Tyr279Cys and Thr468Met could be found in these patients.17 As PTPN11 mutations in multiple lentigines LEOPARD syndrome and Noonan syndrome are exclusive to these conditions, the distinctive manifestations of these disorders likely result from different molecular mechanisms. For instance, as commented in a recent report, the cardiac phenotypes in patients with Noonan syndrome and those with multiple lentigines LEOPARD syndrome with PTPN11 mutations are rather dissimilar, with pulmonary valve stenosis prevailing in the former and hypertrophic cardiomyopathy in the latter.18 We examined the PTPN11 gene in a consecutive series …


Journal of Biomedical Science | 2012

HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition: practical implications of the HLA molecular typing

Francesca Megiorni; Antonio Pizzuti

Celiac disease (CD) is a multifactorial disorder with an estimated prevalence in Europe and USA of 1:100 and a female:male ratio of approximately 2:1. The disorder has a multifactorial etiology in which the triggering environmental factor, the gluten, and the main genetic factors, Human Leukocyte Antigen (HLA)-DQA1 and HLA-DQB1 loci, are well known. About 90-95% of CD patients carry DQ2.5 heterodimers, encoded by DQA1*05 and DQB1*02 alleles both in cis or in trans configuration, and DQ8 molecules, encoded by DQB1*03:02 generally in combination with DQA1*03 variant. Less frequently, CD occurs in individuals positive for the DQ2.x heterodimers (DQA1≠*05 and DQB1*02) and very rarely in patients negative for these DQ predisposing markers. HLA molecular typing for Celiac disease is, therefore, a genetic test with a negative predictive value. Nevertheless, it is an important tool able to discriminate individuals genetically susceptible to CD, especially in at-risk groups such as first-degree relatives (parents, siblings and offspring) of patients and in presence of autoimmune conditions (type 1 diabetes, thyroiditis, multiple sclerosis) or specific genetic disorders (Down, Turner or Williams syndromes).

Collaboration


Dive into the Antonio Pizzuti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Megiorni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Novelli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Emanuela Conti

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Anna Sarkozy

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Marino

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge