Antonio Rossi
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonio Rossi.
Mycopathologia | 2008
Nilce M. Martinez-Rossi; Nalu T.A. Peres; Antonio Rossi
Although fungi do not cause outbreaks or pandemics, the incidence of severe systemic fungal infections has increased significantly, mainly because of the explosive growth in the number of patients with compromised immune system. Thus, drug resistance in pathogenic fungi, including dermatophytes, is gaining importance. The molecular aspects involved in the resistance of dermatophytes to marketed antifungals and other cytotoxic drugs, such as modifications of target enzymes, over-expression of genes encoding ATP-binding cassette (ABC) transporters and stress-response-related proteins are reviewed. Emphasis is placed on the mechanisms used by dermatophytes to overcome the inhibitory action of terbinafine and survival in the host environment. The relevance of identifying new molecular targets, of expanding the understanding about the molecular mechanisms of resistance and of using this information to design new drugs or to modify those that have become ineffective is also discussed.
Mbio | 2012
Diego Martinez; Brian G. Oliver; Yvonne Gräser; Jonathan M. Goldberg; Wenjun Li; Nilce M. Martinez-Rossi; Michel Monod; Ekaterina Shelest; Richard Barton; Elizabeth Birch; Axel A. Brakhage; Zehua Chen; Sarah J. Gurr; David I. Heiman; Joseph Heitman; Idit Kosti; Antonio Rossi; Sakina Saif; Marketa Samalova; Charles Winston Saunders; Terrance Shea; Richard C. Summerbell; Jun Xu; Qiandong Zeng; Bruce W. Birren; Christina A. Cuomo; Theodore C. White
ABSTRACT The major cause of athlete’s foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease. Athlete’s foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete’s foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host’s immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.
Anais Brasileiros De Dermatologia | 2010
Nalu T. A. Peres; Fernanda Cristina Albuquerque Maranhão; Antonio Rossi; Nilce M. Martinez-Rossi
Cutaneous mycoses are among the most common infections in humans and have become an important public health issue because they cause invasive infections in immunocompromised patients. During the infectious process, dermatophyte-host interactions trigger specific metabolic adaptations that allow the pathogen to adhere to and penetrate the host tissue, scavenge nutrients, and overcome the host defense mechanisms. This metabolic shift and the interplay between metabolism, morphogenesis and stress response are important factors that have been extensively studied in several pathogens. Host cells also respond to the pathogen stimuli by activating intracellular signaling pathways that trigger the immune response against the infectious agent. The comprehension of the molecular aspects of these responses may help to establish new therapeutical strategies. In this review, different aspects of the biology of dermatophytes are addressed, with emphasis on the dermatophyte-host interaction and the mechanisms of antifungal resistance.
Biotechnology for Biofuels | 2014
Lílian dos Santos Castro; Wellington Ramos Pedersoli; Amanda Cristina Campos Antoniêto; Andrei Stecca Steindorff; Rafael Silva-Rocha; Nilce M. Martinez-Rossi; Antonio Rossi; Neil Andrew Brown; Gustavo H. Goldman; Vitor M. Faça; Gabriela F. Persinoti; Roberto Nascimento Silva
BackgroundThe filamentous fungus Trichoderma reesei is a major producer of lignocellulolytic enzymes utilized by bioethanol industries. However, to achieve low cost second generation bioethanol production on an industrial scale an efficient mix of hydrolytic enzymes is required for the deconstruction of plant biomass. In this study, we investigated the molecular basis for lignocellulose-degrading enzyme production T. reesei during growth in cellulose, sophorose, and glucose.ResultsWe examined and compared the transcriptome and differential secretome (2D-DIGE) of T. reesei grown in cellulose, sophorose, or glucose as the sole carbon sources. By applying a stringent cut-off threshold 2,060 genes were identified as being differentially expressed in at least one of the respective carbon source comparisons. Hierarchical clustering of the differentially expressed genes identified three possible regulons, representing 123 genes controlled by cellulose, 154 genes controlled by sophorose and 402 genes controlled by glucose. Gene regulatory network analyses of the 692 genes differentially expressed between cellulose and sophorose, identified only 75 and 107 genes as being specific to growth in sophorose and cellulose, respectively. 2D-DIGE analyses identified 30 proteins exclusive to sophorose and 37 exclusive to cellulose. A correlation of 70.17% was obtained between transcription and secreted protein profiles.ConclusionsOur data revealed new players in cellulose degradation such as accessory proteins with non-catalytic functions secreted in different carbon sources, transporters, transcription factors, and CAZymes, that specifically respond in response to either cellulose or sophorose.
BMC Microbiology | 2010
Nalu T.A. Peres; Pablo R. Sanches; Juliana Pfrimer Falcão; Henrique C.S. Silveira; Fernanda G. Paião; Fernanda C.A. Maranhão; Diana E. Gras; Fernando Segato; Rodrigo A. Cazzaniga; Mendelson Mazucato; Jeny Rachid Cursino-Santos; Roseli Aquino-Ferreira; Antonio Rossi; Nilce M. Martinez-Rossi
BackgroundCutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries.ResultsThe 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases.ConclusionIn this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.
Microbial Pathogenesis | 2010
Henrique C.S. Silveira; Diana E. Gras; Rodrigo A. Cazzaniga; Pablo R. Sanches; Antonio Rossi; Nilce M. Martinez-Rossi
Trichophyton rubrum is a dermatophyte that infects human skin and nails. Its growth on keratin as its carbon source shifts the ambient pH from acidic to alkaline, which may be an efficient strategy for its successful infection and maintenance in the host. In this study, we used suppression subtractive hybridization to identify genes preferentially expressed in T. rubrum incubated at either pH 5.0 or pH 8.0. The functional grouping of the 341 overexpressed unigenes indicated proteins putatively involved in diverse cellular processes, such as membrane remodeling, cellular transport, metabolism, cellular protection, fungal pathogenesis, gene regulation, interaction with the environment, and iron uptake. Although the basic metabolic machinery identified under both growth conditions seems to be functionally similar, distinct genes are upregulated at acidic or alkaline pHs. We also isolated a large number of genes of unknown function, probably unique to T. rubrum or dermatophytes. Interestingly, the transcriptional profiling of several genes in a pacC(-) mutant suggests that, in T. rubrum, the transcription factor PacC has a diversity of metabolic functions, in response to either acidic or alkaline ambient pH.
Phytochemistry | 1984
Ely Nahas; Antonio Rossi
Abstract A repressible extracellular alkaline phosphatase (with activity increasing steadily even up to pH 10.5) was purified from cultures of the wild-type strain 74A of Neurospora crassa , after growth on acetate and under limiting amounts of inorganic phosphate for 72 hr at 30°. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulphate (SDS). The MW was ca 172 000 and 82 000 as determined by Sephadex G-200 gel filtration and SDS-PAGE, respectively. The enzyme contained 23.6% neutral sugars, cations were not required for activity, and it was not inactivated by 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) at pH 8. Kinetic data showed Michaelian behaviour for the enzymatic hydrolysis of 4-nitrophenyl disodium orthophosphate (PNP-P) at pH 9 (the K m value and Hill coefficient were 2.2 × 10 −4 M and 0.95, respectively). It was also shown that, at pH 9, the apparent number of Pi bound per dimer molecule equalled one, with a K i value of 7.0 × 10 −4 M. The secreted enzyme showed half-lives of 23.5, 49.0 and 23.5 min at, pH 5.4, 7.4 and 9.0, respectively, after thermal inactivation at 60°. At pH 5.4, the half-life value was quite similar, while the others were respectively 2 and 4 times greater than those previously described for the repressible alkaline phosphatase retained by the mycelium at pH 5.6 or secreted by ‘slime’ cells.
Mycoses | 2012
Nilce M. Martinez-Rossi; Gabriela F. Persinoti; Nalu T.A. Peres; Antonio Rossi
The secretion of proteolytic enzymes by dermatophytes is a key factor in their invasion and subsequent dissemination through the stratum corneum of the host. During the first stages of infection, dermatophytes respond to the skin by de‐repressing a number of genes coding for proteins and enzymes such as adhesins, lipases, phosphatases, DNAses, non‐specific proteases, and keratinases. These proteins have their optimal activity at acidic pH values, which matches the acidic pH of human skin, allowing the pathogen to adhere and penetrate the host tissue, scavenge nutrients and overcome host defence mechanisms. The conserved PacC/Rim101p signal transduction pathway mediates diverse metabolic events involved in ambient pH sensing and in the virulence of pathogenic microorganisms. The seven dermatophyte genomes analysed here revealed the presence of the PacC/Rim101p pH‐responsive signal transduction pathway, which consists of the six pal genes (palA, B, C, F, H and I) and the transcription factor PacC. The PacC binding site was present in the promoter regions of pacC, palB, palI and palH genes of all dermatophytes, suggesting functional equivalency with the signalling cascade of other fungi. Moreover, the promoter region of pacC gene of the seven dermatophytes had multiple PacC DNA‐binding sites, suggesting that these genes, like their homologues in model fungi, are auto‐regulated.
Phytochemistry | 1981
Antonio Rossi; Mario Sergio Palma; Francisco A. Leone; Maria A. Brigliador
Abstract One acid phosphatase (optimum pH at 5.4) was purified from maize scutellum after 96 hr of germination. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulfate (SDS). The enzyme has a MW of 65 000 ± 4000 as determined by Sephadex G-200 gel filtration and SDS-PAGE. The enzyme contained 16% neutral sugars, and cations are not required for activity. The purified enzyme was not inactivated by DTNB at pH 8. The hydrolysis of glucose-6-phosphate in the presence of 4 mM fluoride and 4 mm EDTA, at pH 6.7 (optimum pH), seems to be catalysed by this acid phosphatase.
FEBS Letters | 2009
Juliana Leal; Fabio M. Squina; Janaína S.FreitasJ.S. Freitas; Emiliana M. Silva; Carlos J. Ono; Nilce M. Martinez-Rossi; Antonio Rossi
The Woronin body, a septal pore‐associated organelle specific to filamentous ascomycetes, is crucial for preventing cytoplasmic bleeding after hyphal injury. In this study, we show that T1hex‐1 transcript and a variant splicing T2hex‐1 transcript are up‐regulated at alkaline pH. We also show that both hex‐1 transcripts are overexpressed in the pregc , nuc‐1RIP , and pacC ko mutant strains of Neurospora crassa grown under conditions of phosphate shortage at alkaline pH, suggesting that hex‐1 transcription may be coregulated by these genes. In addition, we present evidence that N. crassa PacC also has metabolic functions at acidic pH.