Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Ruiz is active.

Publication


Featured researches published by Antonio Ruiz.


Veterinary Immunology and Immunopathology | 2010

Neutrophil extracellular trap formation as innate immune reactions against the apicomplexan parasite Eimeria bovis.

Jan Hillern Behrendt; Antonio Ruiz; Horst Zahner; Anja Taubert; Carlos Hermosilla

Eimeria bovis infections are under immunological control and recent studies have emphasized the role of early PMN-mediated innate immune responses in infected calves. Neutrophil extracellular traps (NETs) have recently been demonstrated to act as a killing mechanism of PMN against several pathogens. In the present study, the interactions of bovine PMN with sporozoites of E. bovis were investigated in this respect in vitro. For demonstration and quantification of NET formation, extracellular DNA was stained by Sytox Orange. Fluorescence images after Sytox Orange staining as well as scanning electron microscopy (SEM) showed NET formation to occur upon contact with E. bovis sporozoites. Exposure of PMN to viable sporozoites induced stronger NET formation than to dead or homogenized parasites. NET formation was abolished by treatment with DNase and could be reduced by diphenylene iodonium, which is described as a potent inhibitor of NADPH oxidase. After sporozoite and PMN co-culture, extracellular fibres were found attached to sporozoites and seemed to trap them, strongly suggesting that NETs immobilize E. bovis sporozoites and thereby prevent them from infecting host cells. Thus, transfer of sporozoites, previously being confronted with PMN, to adequate host cells resulted in clearly reduced infection rates when compared to PMN-free controls. NET formation by PMN may therefore represent an effector mechanism in early innate immune reactions against E. bovis. This is the first report indicating Eimeria-induced NET formation.


Veterinary Parasitology | 2008

Occurrence and genotype characterization of Giardia duodenalis in goat kids from the Canary Islands, Spain

Antonio Ruiz; Pilar Foronda; Jorge F. González; A. Guedes; Néstor Abreu-Acosta; J.M. Molina; Basilio Valladares

Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is a wide-spread intestinal protozoa of both humans and animals. Although giardiosis in goat is commonly asymptomatic, young kids may bear an enteric disease associated with persistent diarrhoea and delayed weight gain. In the present study we have analysed the occurrence of Giardia in 315 young goat kids (2-6 months old) from Gran Canaria Island (Spain) through visualization of faecal cysts. The identification of genotypes of G. duodenalis among the farms was attained by nested PCR of the triophosphate isomerase (TPI) and single PCR of beta-giardin genes and subsequent sequencing. Positive samples were found in 42.2% of the animals and 95.5% of the farms. Goat faecal specimens were positive for only livestock-associated G. duodenalis assemblage E genotype for both TPI and beta-giardin genes. The genetic analysis of these two loci revealed the presence of different haplotypes among the farms included in the survey and high homology with homologous genes from cattle and sheep. Altogether, the data presented here provide additional information to the prevalence and genetic characterization of Giardia isolates. The absence of assemblages A and B in this study suggests that zoonotic transmission of Giardia from goats could be of low epidemiological significance, although these findings should be validated in studies including other geographical areas, age groups and larger number of samples.


Parasitology | 2014

The intriguing host innate immune response: novel anti-parasitic defence by neutrophil extracellular traps

Carlos Hermosilla; Tamara Muñoz Caro; Liliana M. R. Silva; Antonio Ruiz; Anja Taubert

The capacity of polymorphonuclear neutrophils (PMN) and other leucocytes of the innate immune system to expel their DNA in a controlled process into the extracellular environment to trap and kill pathogenic microorganisms led to a paradigm shift in our comprehension of host leucocyte-pathogen interactions. Formation of neutrophil extracellular traps (NETs) has recently been recognized as a novel effector mechanism of the host innate immune response against microbial infections. Meanwhile evidence has arisen that NET formation is a widely spread mechanism in vertebrates and invertebrates and extends not only to the entrapment of microbes, fungi and viruses but also to the capture of protozoan and metazoan parasites. PMN produce NETs after stimulation with mitogens, cytokines or pathogens in a controlled process which depends on reactive oxygen species (ROS) and the induction of the Raf-MEK-ERK-mediated signalling pathway cascade. NETs consist of nuclear DNA as a backbone decorated with histones, antimicrobial peptides, and PMN-specific granular enzymes thereby providing an extracellular matrix capable of entrapping and killing invasive pathogens. This review is intended to summarize parasite-related data on NETs. Special attention will be given to NET-associated mechanisms by which parasites, in particular apicomplexa, might be hampered in their ability to reproduce within the host cell and complete the life cycle.


International Journal of Medical Microbiology | 2012

Eimeria bovis: An update on parasite–host cell interactions

Carlos Hermosilla; Antonio Ruiz; Anja Taubert

Apicomplexan parasites are obligate intracellular protozoans and are well recognized modulators of the host cell machinery on varying levels such as host cell metabolism, MHC expression, cell cycle, or apoptosis in order to guarantee their intracellular development and survival. One of the most thoroughly examined apicomplexan pathogens demonstrating a potent manipulative capacity with respect to various host cell functions is Toxoplasma gondii, a protozoon exhibiting rapid intracellular development with small meronts in any nucleated cell, almost irrespective of the cell type or host origin. In contrast, Eimeria bovis merogony I is host- and cell type-restricted and occurs exclusively in bovine endothelial host cells. Furthermore, as a peculiarity, intracellular E. bovis meront I development is a long-lasting process (up to 3 weeks), leading to the formation of huge macromeronts of up to 300 μm in size, containing up to 120,000 merozoites I as offspring. In consequence, the necessity for intense host cell modulation to support this particular development appears even more pressing than in other apicomplexan parasite cases. Here we review the data currently available on E. bovis-host cell interactions, indicating the intriguing capacity of this protozoan to exploit and utilize its host cell for its own benefit.


Veterinary Parasitology | 2010

Development of Eimeria ninakohlyakimovae in vitro in primary and permanent cell lines

Antonio Ruiz; Jan Hillern Behrendt; Horst Zahner; Carlos Hermosilla; D. Pérez; L. Matos; M.C. Muñoz; J.M. Molina; Anja Taubert

Infections with Eimeria ninakohlyakimovae represent important coccidian diseases of goats severely affecting animal health and profitability of goat industry. For the development of suitable vaccination strategies basic research is needed for which one important prerequisite is the establishment of in vitro cultures guaranteeing the availability of parasitic material. Therefore, primary cell cultures [caprine, bovine and human umbilical vein endothelial cells (CUVEC, BUVEC, HUVEC)] as well as permanent cell lines [bovine foetal gastrointestinal cells (BFGC), bovine colonic epithelial cells (BCEC), African green monkey kidney cells (VERO)] were exposed to vital sporozoites of E. ninakohlyakimovae. The parasites invaded all different cell types used, irrespective of their origin, but further development into macromeronts and subsequent release of viable merozoites I were restricted to ruminant cells. Mature macromeronts developed in both, endothelial (CUVEC, BUVEC) and epithelial cells (BCEC). VERO cells were non-permissive for parasite development, nevertheless sporozoites survived for 21 days p.i. within an enlarged parasitophorous vacuole. Best in vitro development of E. ninakohlyakimovae macromeronts with respect to the production of viable merozoites I was observed in BCEC, followed by BUVEC. However, the largest macromeronts developed in CUVEC. Mature macromeronts were also detected in BFGC, but these cells were less effective concerning infection rates and productivity. The complete life-cycle of E. ninakohlyakimovae leading to oocyst production was not accomplished in any cell type used. In conclusion, we established suitable in vitro systems for the culture of E. ninakohlyakimovae macromeronts, e.g., for the mass production of merozoites I, for basic studies on parasite/host endothelial cell interactions or for pharmaceutical screenings.


Research in Veterinary Science | 2013

Isolation of an Eimeria ninakohlyakimovae field strain (Canary Islands) and analysis of its infection characteristics in goat kids.

Antonio Ruiz; L. Matos; M.C. Muñoz; Carlos Hermosilla; J.M. Molina; M. Andrada; F. Rodríguez; D. Pérez; A.M. López; A. Guedes; Anja Taubert

The current study was conducted to isolate a field strain of Eimeria ninakohlyakimovae, characterize its infectivity and the response to challenge under experimental conditions. The isolated strain (GC) induced a prepatent period of 14-15 days p.i., a patency of 7±2 days and a noticeable pathogenicity in infected goat kids. Challenge trials resulting in a decrease of oocysts per gram counts as well as a milder intensity of clinical signs in re-infected animals indicated the capacity of this strain to induce protective immune response. Altogether, the data reported in the present study suggest that the strain E. ninakohlyakimovae GC is a useful tool for the investigation of mechanisms of pathogenicity as well as host protective immune response in caprine coccidiosis, representing a valuable prerequisite for the development of future strategies in prophylaxis and control of this important parasitic disease in goat.


Veterinary Parasitology | 2012

Immunoprotective effect of cysteine proteinase fractions from two Haemonchus contortus strains adapted to sheep and goats

J.M. Molina; Sergio Martín; Yeray Isidro Hernández; Jorge F. González; O. Ferrer; Antonio Ruiz

A preliminary analysis of the significance of genetic diversity in cysteine proteinase genes has been performed simultaneously in sheep and goats, with regard to the immunological control using these enzymes against haemonchosis. For this purpose, we have studied the cross-immunoprotective effect of cysteine protease-enriched protein fractions (CPFs) in adult worms of two Haemonchus contortus strains from North America and Spain that are adapted to sheep and goats, respectively. Previous genetic analysis of cysteine proteinase genes in both strains has shown that some of loci are polymorphic and these differences are translated into changes in the amino acid sequences. However, our results show that CPFs from H. contortus adult worms have a protective effect against the parasite in both sheep and goats. These results are similar regardless of whether they were obtained from sheep or goat-adapted H. contortus strains, which could be very important in case H. contortus CPFs were commercially used in different countries, as vaccines to prevent the negative effects of this parasite. Interestingly, this experimental inoculation of both species with a heterologous strain of H. contortus contributes to the idea shown in previous studies about how difficult is the interpretation and the comparison of vaccination where strains not adapted to a specific host are used. Therefore, the challenger of using heterologous strains could provide similar results to those observed in immunised animals. This study suggests the possibility of exploring the mechanisms involved in natural protection against non-adapted strains, in order to develop strategies to control haemonchosis.


Veterinary Parasitology | 2016

Eimeria ninakohlyakimovae induces NADPH oxidase-dependent monocyte extracellular trap formation and upregulates IL-12 and TNF-α, IL-6 and CCL2 gene transcription

D. Pérez; M.C. Muñoz; J.M. Molina; T. Muñoz-Caro; Liliana M. R. Silva; Anja Taubert; Carlos Hermosilla; Antonio Ruiz

Extracellular trap (ET) formation has been demonstrated as novel effector mechanism against diverse pathogens in polymorphonuclear neutrophils (PMN), eosinophils, mast cells, macrophages and recently also in monocytes. In the current study, we show that E. ninakohlyakimovae triggers the deliverance of monocyte-derived ETs in vitro. Fluorescence illustrations as well as scanning electron microscopy (SEM) analyses showed that monocyte-derived ET formation was rapidly induced upon exposure to viable sporozoites, sporocysts and oocysts of E. ninakohlyakimovae. Classical features of monocyte-released ETs were confirmed by the co-localization of extracellular DNA adorned with myeloperoxidase (MPO) and histones (H3) in parasite-entrapping structures. The treatment of caprine monocyte ET structures with NADPH oxidase inhibitor diphenylene iodondium (DPI) significantly reduced ETosis confirming the essential role of reactive oxygen species (ROS) in monocyte mediated ETs formation. Additionally, co-culture of monocytes with viable sporozoites and soluble oocyst antigen (SOA) induced distinct levels of cytokine and chemokine gene transcription. Thus, the transcription of genes encoding for IL-12 and TNF-α was significantly upregulated after sporozoite encounter. In contrast IL-6 and CCL2 gene transcripts were rather weakly induced by parasites. Conversely, SOA only induced the up-regulation of IL-6 and CCL2 gene transcription, and failed to enhance transcripts of IL-12 and TNF-α in vitro. We here report on monocyte-triggered ETs as novel effector mechanism against E. ninakohlyakimovae. Our results strongly suggest that monocyte-mediated innate immune reactions might play an important role in early host immune reactions against E. ninakohlyakimovae in goats.


Parasitology | 2004

Genetic variability in cysteine protease genes of Haemonchus contortus

Antonio Ruiz; J. M. Molina; Annete Njue; Roger K. Prichard

To increase the existent genetic variability in cysteine proteases, a polymorphism study was performed in Haemonchus contortus by comparing 2 different strains of the parasite: North American (NA) and Spanish (SP) strains. For this purpose, the polymorphism of 5 previously reported genes (AC-1, AC-3, AC-4, AC-5 and GCP-7) were analysed by PCR-SSCP and sequencing procedures. Based on the SSCP results, a total of 20 different alleles were identified for the 5 loci assessed. Except locus AC-5, all the loci were polymorphic. Loci AC-1, AC-3, AC-4 and GCP-7 showed 5, 8, 2 and 4 alleles, respectively. The allelic frequencies ranged from 0.0070 to 0.8560 and were significantly different between strains. In addition, nucleotide diversity analyses showed a significant variation within and between strains. The variations in the nucleotide sequence of the different alleles were translated in some cases into changes in the amino acid sequence. Evidence of genetic variability in cysteine proteases from two different strains of H. contortus for the same set of genes had not been previously reported.


Veterinary Parasitology | 2014

Immunization with Eimeria ninakohlyakimovae-live attenuated oocysts protect goat kids from clinical coccidiosis.

Antonio Ruiz; M.C. Muñoz; J.M. Molina; Carlos Hermosilla; M. Andrada; Pedro C. Lara; Elisa Bordón; D. Pérez; A.M. López; L. Matos; A. Guedes; Soraya Falcón; Yaiza Falcón; Sergio Martín; Anja Taubert

Caprine coccidiosis, affecting mainly young goat kids around the weaning period, is worldwide the most important disease in the goat industry. Control of caprine coccidiosis is increasingly hampered by resistances developed against coccidiostatic drugs leading to an enhanced need for anticoccidial vaccines. In the current study we conducted an oral immunization trial with live attenuated sporulated Eimeria ninakohlyakimovae oocysts. Sporulated E. ninakohlyakimovae oocysts were attenuated by X-irradiation technique. The experimental design included a total of 18 goat kids divided into the following groups: (i) animals immunized with attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-irradiated homologous oocysts (group 1); (ii) animals infected with non-attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-attenuated homologous oocysts (group 2); (iii) animals primary-infected with untreated E. ninakohlyakimovae oocysts at 8 weeks of age (control of the challenge infection, group 3); (iv) non-infected control animals (group 4). Goat kids immunized with live attenuated E. ninakohlyakimovae oocysts (group 1) excreted significantly less oocysts in the faeces (95.3% reduction) than kids infected with non-attenuated ones (group 2). Furthermore, immunization with live but attenuated oocysts resulted in ameliorated clinical coccidiosis compared to goat kids infected with untreated oocysts (group 2) and resulted in equally reduced signs of coccidiosis after challenge infection compared to acquired immunity driven by non-attenuated oocysts. Overall, the present study demonstrates for the first time that live attenuated E. ninakohlyakimovae oocysts orally administered showed almost no pathogenicity but enough immunogenicity in terms of immunoprotection. Importantly, vaccinated animals still shed low amounts of oocysts, guaranteeing environmental contamination and consecutive booster infections to sustain ongoing immunity.

Collaboration


Dive into the Antonio Ruiz's collaboration.

Top Co-Authors

Avatar

J.M. Molina

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Pérez

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

M.C. Muñoz

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

A.M. López

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

L. Matos

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

Sergio Martín

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

Jorge F. González

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

A. Guedes

University of Las Palmas de Gran Canaria

View shared research outputs
Researchain Logo
Decentralizing Knowledge