Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Soleti is active.

Publication


Featured researches published by Antonio Soleti.


Vascular Cell | 2011

Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential

Antonella Blasi; Carmela Martino; Luigi Balducci; Marilisa Saldarelli; Antonio Soleti; Stefania Elena Navone; Laura Canzi; Silvia Cristini; Gloria Invernici; Eugenio Parati; Giulio Alessandri

BackgroundMesenchymal stem cells (MSCs) are multipotent stem cells able to differentiate into different cell lineages. However, MSCs represent a subpopulation of a more complex cell composition of stroma cells contained in mesenchymal tissue. Due to a lack of specific markers, it is difficult to distinguish MSCs from other more mature stromal cells such as fibroblasts, which, conversely, are abundant in mesenchymal tissue. In order to find more distinguishing features between MSCs and fibroblasts, we studied the phenotypic and functional features of human adipose-derived MSCs (AD-MSCs) side by side with normal human dermal fibroblasts (HNDFs) in vitroMethodsAD-MSCs and HNDFs were cultured, expanded and phenotypically characterized by flow cytometry (FC). Immunofluorescence was used to investigate cell differentiation. ELISA assay was used to quantify angiogenic factors and chemokines release. Cultures of endothelial cells (ECs) and a monocyte cell line, U937, were used to test angiogenic and anti-inflammatory properties.ResultsCultured AD-MSCs and HNDFs display similar morphological appearance, growth rate, and phenotypic profile. They both expressed typical mesenchymal markers-CD90, CD29, CD44, CD105 and to a minor extent, the adhesion molecules CD54, CD56, CD106 and CD166. They were negative for the stem cell markers CD34, CD146, CD133, CD117. Only aldehyde dehydrogenase (ALDH) was expressed. Neither AD-MSCs nor HNDFs differed in their multi-lineage differentiation capacity; they both differentiated into osteoblast, adipocyte, and also into cardiomyocyte-like cells. In contrast, AD-MSCs, but not HNDFs, displayed strong angiogenic and anti-inflammatory activity. AD-MSCs released significant amounts of VEGF, HGF and Angiopoietins and their conditioned medium (CM) stimulated ECs proliferation and tube formations. In addition, CM-derived AD-MSCs (AD-MSCs-CM) inhibited adhesion molecules expression on U937 and release of RANTES and MCP-1. Finally, after priming with TNFα, AD-MSCs enhanced their anti-inflammatory potential; while HNDFs acquired pro-inflammatory activity.ConclusionsAD-MSCs cannot be distinguished from HNDFs in vitro by evaluating their phenotypic profile or differentiation potential, but only through the analysis of their anti-inflammatory and angiogenic properties. These results underline the importance of evaluating the angiogenic and anti-inflammatory features of MSCs preparation. Their priming with inflammatory cytokines prior to transplantation may improve their efficacy in cell-based therapies for tissue regeneration.


Molecular and Cellular Endocrinology | 2009

The non-peptidyl low molecular weight radical scavenger IAC protects human pancreatic islets from lipotoxicity

V. D'Aleo; Silvia Del Guerra; Manuela Martano; Barbara Bonamassa; Donatella Canistro; Antonio Soleti; Luca Valgimigli; Moreno Paolini; Franco Filipponi; Ugo Boggi; Stefano Del Prato; R Lupi

BACKGROUND Chronic exposure to high free fatty acids (FFA) can lead to irreversible damage of beta-cell accounting for impaired insulin secretion. Multiple mechanisms concur in generating the damage, but activation of oxidative stress may contribute to the final toxic effect. To better understand the phenomenon of lipotoxicity in human beta-cells, we evaluated the effects of 24-h pre-culture with 1.0 mmol/l FFA on the function, survival and mRNA expression of several enzymes involved in the generation and scavenging of reactive oxygen species (ROS). MATERIAL AND METHODS Human islets, prepared by collagenase digestion and density gradient purification from 9 pancreases of multiorgan donors, were incubated for 24-h in the presence 1.0 mmol/l long-chain mixture (oleate:palmitate, 2:1) FFA, with or without 100 micromol/l IAC, a non-peptidyl low molecular weight radical scavenger. At the end of incubation period, insulin secretion was measured by static incubation, and mRNA expression of insulin, Cu/Zn-SOD, Mn-SOD, Catalase, Glutathione peroxidase (GSH-px) and HO-1 by quantitative Real-Time RT-PCR. Nitrotyrosine levels were determined by an ELISA technique. RESULTS As compared to control incubation (Ctrl, no FFA), exposure to FFA was associated with impaired insulin release and reduced insulin mRNA expression. The presence of IAC in the incubation medium increased insulin release significantly and prevented changes in mRNA expression. Exposure to FFA was associated with oxidative stress as indicated by a significant accumulation of nitrotyrosine and IAC restrained such an increase. mRNA expression of Cu/Zn-SOD, Mn-SOD, Catalase, GSH-Px, and HO-1 were all modified after FFA exposure. These changes were partially prevented in the presence of IAC. CONCLUSIONS In human islets 24-h exposure to high FFA causes oxidative stress associated with changes of several enzymes involved in ROS scavenging. These effects were prevented by the use of an antioxidant molecule.


Experimental Cell Research | 2010

Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism.

Rocco De Siena; Luigi Balducci; Antonella Blasi; Manuela Gessica Montanaro; Marilisa Saldarelli; Carmela Martino; Gaetano Logrieco; Antonio Soleti; Simona Fiobellot; Paolo Madeddu; Giacomo Rossi; Domenico Ribatti; Antonio Crovace; Silvia Cristini; Gloria Invernici; Eugenio Parati; Giulio Alessandri

Cell-based therapy could be a valid option to treat myocardial infarct (MI). Adipose-derived stromal cells (ADStCs) have demonstrated tissue regenerative potential including cardiomyogenesis. Omentum is an extremely rich source of visceral fat and its accumulation seems to correlate with cardiovascular diseases. We investigated the capacity of human fat Omentum-derived StCs (FOStCs) to affect heart function upon acute infarct in pigs induced by permanent ligation of the anterior interventricular artery (IVA). We demonstrated for the first time that the local injection of 50x10(6) of FOStCs ameliorates the functional parameters of post-infarct heart. Most importantly, histology of FOStCs treated hearts demonstrated a substantial improvement of cardiomyogenesis. In culture, FOStCs produced an impressive number and amount of angiogenic factors and cytokines. Moreover, the conditioned medium of FOStCs (FOStCs-CM) stimulates in vitro cardiac endothelial cells (ECs) proliferation and vascular morphogenesis and inhibits monocytes, EC activation and cardiomyocyte apoptosis. Since FOStCs in vivo did not trans-differentiate into cardiomyocyte-like cells, we conclude that FOStCs efficacy was presumably mediated by a potent paracrine mechanism involving molecules that concomitantly improved angiogenesis, reduced inflammation and prevented cardiomyocytes death. Our results highlight for the first time the important role that human FOStCs may have in cardiac regeneration.


Stem Cell Research & Therapy | 2014

Immortalization of human adipose-derived stromal cells: production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors

Luigi Balducci; Antonella Blasi; Marilisa Saldarelli; Antonio Soleti; Augusto Pessina; Arianna Bonomi; Valentina Coccè; Marta Dossena; Valentina Tosetti; Valentina Ceserani; Stefania Elena Navone; Maria Laura Falchetti; Eugenio Parati; Giulio Alessandri

IntroductionHuman adipose-derived stromal cells (hASCs), due to their relative feasibility of isolation and ability to secrete large amounts of angiogenic factors, are being evaluated for regenerative medicine. However, their limited culture life span may represent an obstacle for both preclinical investigation and therapeutic use. To overcome this problem, hASCs immortalization was performed in order to obtain cells with in vitro prolonged life span but still maintain their mesenchymal marker expression and ability to secrete angiogenic factors.MethodshASCs were transduced with the human telomerase reverse transcriptase (hTERT) gene alone or in combination with either SV-40 or HPV E6/E7 genes. Mesenchymal marker expression on immortalized hASCs lines was confirmed by flow cytometry (FC), differentiation potential was evaluated by immunocytochemistry and ELISA kits were used for evaluation of angiogenic factors. Green fluorescent protein (GFP) gene transduction was used to obtain fluorescent cells.ResultsWe found that hTERT alone failed to immortalize hASCs (hASCs-T), while hTERT/SV40 (hASCs-TS) or hTERT/HPV E6/E7 (hASCs-TE) co-transductions successfully immortalized cells. Both hASCs-TS and hASCs-TE were cultured for up to one year with a population doubling level (PDL) up to 100. Comparative studies between parental not transduced (hASCs-M) and immortalized cell lines showed that both hASCs-TS and hASCs-TE maintained a mesenchymal phenotypic profile, whereas differentiation properties were reduced particularly in hASCs-TS. Interestingly, hASCs-TS and hASCs-TE showed a capability to secrete significant amount of HGF and VEGF. Furthermore, hASCs-TS and hASCs-TE did not show tumorigenic properties in vitr o although some chromosomal aberrations were detected. Finally, hASCs-TS and hASCs-TE lines were stably fluorescent upon transduction with the GFP gene.ConclusionsHere we demonstrated, for the first time, that hASCs, upon immortalization, maintain a strong capacity to secrete potent angiogenic molecules. By combining hASCs immortalization and their paracrine characteristics, we have developed a “hybridoma-like model” of hASCs that could have potential applications for discovering and producing molecules to use in regenerative medicine (process scale-up).In addition, due to the versatility of these fluorescent-immortalized cells, they could be employed in in vivo cell-tracking experiments, expanding their potential use in laboratory practice.


Pancreas | 2007

Reduction of oxidative stress by a new low-molecular-weight antioxidant improves metabolic alterations in a nonobese mouse diabetes model.

Michela Novelli; D'Aleo; R Lupi; Moreno Paolini; Antonio Soleti; Piero Marchetti; Pellegrino Masiello

Objectives: We have previously established a nonobese diabetes mouse model characterized by moderate hyperglycemic levels, like those usually occurring in human type 2 diabetes. As oxidative stress is considered a major mechanism of progressive β-cell damage in diabetes, we tested in this model the protective effects of a new low-molecular-weight antioxidant, namely, bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate dihydrochloride (IAC). Methods: Diabetes was induced in C57Bl/6J mice by streptozotocin (STZ) and nicotinamide (NA) administration. Two weeks later, STZ-NA mice were treated for 5 weeks with different doses of IAC (15 or 30 mg/kg per day intraperitoneally) and monitored for glycemia, insulinemia, glucose tolerance, and pancreatic insulin content. Results: Streptozotocin-NA mice showed moderate hyperglycemia, hypoinsulinemia, glucose intolerance, growth impairment, and markedly reduced pancreatic insulin content (22% of controls). IAC-treated STZ-NA mice showed clear-cut reduction of hyperglycemia and attenuation of glucose intolerance, associated to higher residual pancreatic insulin content with respect to untreated diabetic animals. Plasma nitrotyrosine levels (an index of oxidative stress), enhanced 3-fold in diabetic mice, were significantly reduced by IAC treatment. Significant correlations were found between plasma nitrotyrosine values and either blood glucose levels or pancreatic insulin content. Conclusions: In the STZ-NA diabetic mouse model, the new antioxidant, IAC, improves diabetic metabolic alterations, likely by counteracting β-cell dysfunction and loss associated with oxidative stress.


Journal of the Neurological Sciences | 2010

The novel radical scavenger IAC is effective in preventing and protecting against post-ischemic brain damage in Mongolian gerbils

Donatella Canistro; Alessandra Affatato; Antonio Soleti; Vincenzo Mollace; Carolina Muscoli; Francesca Sculco; Iolanda Sacco; Valeria Visalli; Barbara Bonamassa; Manuela Martano; Michelangelo Iannone; Andrea Sapone; Moreno Paolini

The removal of pathologically generated free radicals produced during ischemia, reperfusion and intracranical hemorrhage seems to be a viable approach to neuroprotection. However, at present, no neuroprotective agent has proven effective in focal ischemic stroke phase III trials, despite the encouraging data in animal models. This study aimed to explore the effect of the brain penetrant low molecular weight radical scavenger bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate (IAC) in neurological damage subsequent to ischemia-reperfusion injury in Mongolian gerbils. We examined the intraperitoneal effects of IAC on temporary bilateral common carotid artery occlusion (BCCO) by means of morphological and histological analysis of the hippocampus. Significant dose-dependent protective effects of IAC (1 to 10mg/kg b.w.) against neuropathological and morphological brain changes were seen when administered i.p. 1h before temporary BCCO in Mongolian gerbils. When administered up to 6h after BCCO, IAC actually reverses the neurodegenerative processes (e.g. hippocampal cell viability) induced by ischemia in a dose-dependent fashion. Data show that IAC is highly effective in protecting and preventing oxidative brain damage associated with cerebral flow disturbances. It is also effective even in late treatment of the insult, emphasizing its potential role for the management of ischemic stroke patients.


European Journal of Pharmacology | 2009

Effects of the non-peptidyl low molecular weight radical scavenger IAC in DNBS-induced colitis in rats

Valentina Vasina; Massimiliano Broccoli; Maria Grazia Ursino; Simona Fiò Bellot; Antonio Soleti; Moreno Paolini; Fabrizio De Ponti

Intestinal inflammation is accompanied by excessive production of reactive oxygen and nitrogen radical species because of the massive infiltration of polymorphonuclear and mononuclear leukocytes. Antioxidant compounds seem to protect against experimental colitis. Here we investigated the effects of the innovative non-peptidyl, low molecular weight radical scavenger bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate (IAC), which is highly reactive with most oxygen, nitrogen and carbon centred radicals and is easily distributed in cell membranes and intra-extra cellular compartments, in the DNBS model of colitis. Colitis was induced in male SD rats by intrarectal administration of DNBS (15 mg/rat). IAC (30 mg/kg b.w., hydrophilic or lipophilic form) was administered daily (orally or i.p.) starting from the day before the induction of colitis for 7 days (n=6-8 per group). Colonic damage was assessed by means of macroscopic and histological scores, myeloperoxidase activity (MPO) and TNF-alpha tissue levels. Colitis impaired body weight gain and markedly increased all inflammatory parameters. IAC significantly counteracted the reduction in body weight gain, decreased colonic damage and inflammation and TNF-alpha levels in DNBS-colitis. The antioxidant IAC significantly ameliorates experimental colitis in rats. This strengthens the notion that antioxidant compounds may have therapeutic potential in inflammatory bowel disease.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015

Redox-Based Flagging of the Global Network of Oxidative Stress Greatly Promotes Longevity

Donatella Canistro; Caterina Boccia; Rosanna Falconi; Barbara Bonamassa; Luca Valgimigli; Fabio Vivarelli; Antonio Soleti; Maria Luisa Genova; Giorgio Lenaz; Andrea Sapone; Francesco Zaccanti; Sherif Z. Abdel-Rahman; Moreno Paolini

Despite more than 50 years of investigations into the free radical theory, the direct role of oxidative stress (OS) in aging and age-related diseases remains unproven. Little progress in identifying antioxidant drugs promoting longevity has been made, likely due to selectivity toward one or few radical species, variable efficacy in vivo, inherent pro-oxidant behavior of such drugs, or lack of synergism with metabolic redox homeostasis. Silencing the wide range of reactive free radicals has a great impact on OS-linked outcomes and age-related disorders. Here we show that an innovative, redox-active, multi-radical-scavenger catalytic drug delays the age-associated decline in physiological processes and markedly prolongs the mean lifespan of the adult freshwater annelids Aeolosoma viride by 170%. This unprecedented extension is associated with a decreased OS status. Consistently, treatment of annelids increases their natural resistance to oxygen-derived damage without affecting mitochondrial respiration or reproductive activity. Conversely, the superoxide dismutase (SOD)-mimetic EUK 134 that we selected as a positive control led to an increase in lifespan of ~50%, the same increase previously observed in nematodes. Our results show that reduction of the global network of OS has a profound impact on aging, prompting the development of a possible redox-based therapeutic intervention to counteract the progression of aging.


Cell Transplantation | 2008

Beneficial effect of the nonpeptidyl low molecular weight radical scavenger IAC on cultured human islet function.

R Mancarella; Del Guerra S; Masini M; M Bugliani; Luca Valgimigli; Gian Franco Pedulli; Moreno Paolini; Donatella Canistro; Armando A; Antonio Soleti; Franco Filipponi; Franco Mosca; Ugo Boggi; Del Prato S; Piero Marchetti; R Lupi

We examined a possible protective effect of the nonpeptidyl low molecular weight radical scavenger IAC [bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decanedioate di-hydrochloride] on isolated human islet cells against isolation and culture oxidative stress. Islets isolated from pancreases of nondiabetic multiorgan donors by collagenase digestion were purified by density gradient centrifugation. After the isolation, islets were either exposed or not exposed for 7 days to 10 μmol/L IAC. We found that IAC markedly reduced oxidative stress and ameliorated islets function. These results suggest that the use of IAC could be an interesting pharmacological approach for the treatment of the islets before transplantation.


International Journal of Pharmaceutics | 2016

Development of microparticles for oral administration of the non-conventional radical scavenger IAC and testing in an inflammatory rat model.

Nadia Passerini; Beatrice Albertini; Marcello Di Sabatino; Giuseppe Corace; Barbara Luppi; Donatella Canistro; Fabio Vivarelli; Silvia Cirillo; Antonio Soleti; Giulia Merizzi; Moreno Paolini

The bis (1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate (IAC), is an innovative non- radical scavenger used with success in numerous disease models such as inflammation, neurological disorders, hepatitis and diabetes. The pharmacological treatments have been performed by the intraperitoneal route of administration, representing to date, the main limit for the drug use. The aim of this study was to develop a delivery system that allows the oral administration of IAC while maintaining its therapeutic efficacy. Solid Lipid Microparticles (SLMs) containing a theoretical 18% (w/w) of IAC have been produced by the spray congealing technology; three formulations have been tested (A, B and C) using different low melting point carriers (stearic acid, Compritol(®) HD5ATO and carnauba wax) alone or in combination. All IAC loaded SLMs exhibited a spherical shape, encapsulation efficiency higher than 94% and particle size suitable for the oral route. Administered per os at different dosages in an inflammation rat model, all SLMs demonstrated their efficacy in reducing oedema and alleviating pain, compared to the gold standards Indomethacin and Paracetamol. These results suggested that the SLMs are an efficacious delivery system for the oral administration of IAC, potentially useful for the treatment of others diseases related to an over production of free radicals.

Collaboration


Dive into the Antonio Soleti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge