Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Speranza is active.

Publication


Featured researches published by Antonio Speranza.


Weather and Forecasting | 2003

Sensitivity of Precipitation Forecast Skill Scores to Bilinear Interpolation and a Simple Nearest-Neighbor Average Method on High-Resolution Verification Grids

Christophe Accadia; Stefano Mariani; Marco Casaioli; Alfredo Lavagnini; Antonio Speranza

Grid transformations are common postprocessing procedures used in numerical weather prediction to transfer a forecast field from one grid to another. This paper investigates the statistical effects of two different interpolation techniques on widely used precipitation skill scores like the equitable threat score and the Hanssen‐Kuipers score. The QUADRICS Bologna Limited Area Model (QBOLAM), which is a parallel version of the Bologna Limited Area Model (BOLAM) described by Buzzi et al., is used, and it is verified on grids of about 10 km (grid-box size). The precipitation analysis is obtained by means of a Barnes objective analysis scheme. The rain gauge data are from the Piedmont and Liguria regions, in northwestern Italy. The data cover 243 days, from 1 October 2000 to 31 May 2001. The interpolation methods considered are bilinear interpolation and a simple nearest-neighbor averaging method, also known as remapping or budget interpolation, which maintains total precipitation to a desired degree of accuracy. A computer-based bootstrap technique is applied to perform hypothesis testing on nonparametric skill scores, in order to assess statistical significance of score differences. Small changes of the precipitation field induced by the two interpolation methods do affect skill scores in a statistically significant way. Bilinear interpolation affects skill scores more heavily, smoothing the maxima, and smearing and increasing the minima of the precipitation field over the grid. The remapping procedure seems to be more appropriate for performing high-resolution grid transformations, although the present work shows that a precipitation edge-smearing effect at lower precipitation thresholds exists. Equitable threat score is more affected than Hanssen‐Kuipers score by the interpolation process, since this last score weights all kind of successes (hits and correct no-rain forecasts). Correct no-rain forecasts at higher thresholds often outnumber hits, misses, and false alarms, reducing the sensitivity to false alarm changes introduced by the interpolation process.


Journal of the Atmospheric Sciences | 1985

A Theory of Deep Cyclogenesis in the Lee of the Alps. Part I: Modifications of Baroclinic Instability by Localized Topography

Antonio Speranza; Andrea Buzzi; A. Trevisan; P. Malguzzi

Abstract Observational and numerical studies on Alpine cyclogenesis have shown that a developing baroclinic wave approaching the mountain region gives rise to a disturbance of dipolar structure, extending throughout the troposphere with horizontal scales comparable to the Rossby deformation radius. It is possible to interpret such disturbances as modifications of baroclinically unstable modes, induced by localized topography. In the present approach, the effect of the mountain is introduced in a perturbative sense, in the framework of quasi-geostrophic theory. Even in this simple approach the spatial structure of the unstable modes is modified by a localized topography in the direction required in order to explain the observed features. In the case of a continuously stratified fluid, the basic characteristics of the observed vertical structure are also reproduced.


Monthly Weather Review | 2007

Comparison of 10-m Wind Forecasts from a Regional Area Model and QuikSCAT Scatterometer Wind Observations over the Mediterranean Sea

Christophe Accadia; Stefano Zecchetto; Alfredo Lavagnini; Antonio Speranza

Surface wind forecasts from a limited-area model [the Quadrics Bologna Limited-Area Model (QBOLAM)] covering the entire Mediterranean area at 0.1° grid spacing are verified against Quick Scatterometer (QuikSCAT) wind observations. Only forecasts within the first 24 h in coincidence with satellite overpasses are used. Two years of data, from 1 October 2000 to 31 October 2002, have been considered, allowing for an adequate statistical assessment under different wind conditions. This has been carried out by analyzing the fields of the mean wind vectors, wind speed bias, correlation, difference standard deviation, steadiness, gustiness, and mean wind direction difference, in order to investigate spatial variability. Statistics have been computed on a seasonal basis. A comparison of satellite and forecast winds with measurements from three buoys was also performed. Some critical areas of the Mediterranean Sea where wind forecast quality is lower than average have been identified. Such areas correspond to semienclosed basins surrounded by important orography and to small regions at the lee side of the main islands. In open-sea regions the model underestimates wind strength from about 0.5 m s 1 in spring and summer to 1.0 m s 1 in winter, as evidenced by the existing biases against scatterometer data. Also, a wind direction bias (scatterometer minus model) generally between 5° and 15° exists. A survey of the identified and likely sources of forecast error is performed, indicating that orography representation plays an important role. Numerical damping is identified as a likely factor reducing forecast wind strength. The need for a correction scheme is envisaged to provide more accurate forcing for numerical sea state forecasting models, wind energy evaluation, and latent and/or sensible heat exchanges.


Journal of Geophysical Research | 2008

Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models

Valerio Lucarini; Robert Danihlik; Ida Kriegerova; Antonio Speranza

[1] We present an intercomparison and verification analysis of 20 GCMs (Global Circulation Models) included in the 4th IPCC assessment report regarding their representation of the hydrological cycle on the Danube river basin for 1961–2000 and for the 2161–2200 SRESA1B scenario runs. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. The span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are comparable to those of the RCMs (Regional Climate Models) analyzed in a previous work, in spite of the much higher resolution and common nesting of the RCMs. The reanalyses are shown to feature several inconsistencies and cannot be used as a verification benchmark for the hydrological cycle in the Danubian region. In the scenario runs, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. Moreover, in several cases we find that qualitatively different behaviors emerge among the models: the ensemble mean does not represent any sort of average model, and often it falls between the models’ clusters.


Weather and Forecasting | 2005

Verification of Precipitation Forecasts from Two Limited-Area Models over Italy and Comparison with ECMWF Forecasts Using a Resampling Technique

Christophe Accadia; Stefano Mariani; Marco Casaioli; Alfredo Lavagnini; Antonio Speranza

Abstract This paper presents the first systematic limited area model (LAM) precipitation verification work over Italy. A resampling technique was used to provide skill score results along with confidence intervals. Two years of data were used, starting in October 2000. Two operational LAMs have been considered, the Limited Area Model Bologna (LAMBO) operating at the Agenzia Regionale Prevenzione e Ambiente-Servizio Meteorologico Regionale (ARPA-SMR) of the Emilia–Romagna region, and the QUADRICS Bologna Limited Area Model (QBOLAM) running at the Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici (APAT). A 24-h forecast skill score comparison was first performed on the native 0.1° high-resolution grids, using a Barnes scheme to produce the observed 24-h accumulated rainfall analysis. Two nonparametric skill scores were used: the equitable threat score (ETS) and the Hanssen and Kuipers score (HK). Frequency biases (BIA) were also calculated. LAM forecasts were also remapped on a lower-resolutio...


Journal of Atmospheric & Ocean Science | 2007

Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. Part I: Stationary Case

Mara Felici; Valerio Lucarini; Antonio Speranza; Renato Vitolo

A baroclinic model of intermediate complexity for the atmospheric jet at middle latitudes is used as a stochastic generator of atmosphere-like time series. In this case, time series of the total energy of the system are considered. Statistical inference of extreme values is applied to sequences of yearly maxima extracted from the time series in the rigorous setting provided by extreme value theory. The generalized extreme value (GEV) family of distributions is used here as a basic model, both for its qualities of simplicity and its generality. Several physically plausible values of the parameter T E , which represents the forced equator-to-pole temperature gradient and is responsible for setting the average baroclinicity in the atmospheric model, are used to generate stationary time series of the total energy. Estimates of the three GEV parameters-location, scale, and shape-are inferred by maximum likelihood methods. Standard statistical diagnostics, such as return level and quantile-quantile plots, are systematically applied to assess goodness-of-fit. The GEV parameters of location and scale are found to have a piecewise smooth, monotonically increasing dependence on T E . The shape parameter also increases with T E but is always negative, as is required a priori by the boundedness of the total energy. The sensitivity of the statistical inferences is studied with respect to the selection procedure of the maxima: the roles occupied by the length of the sequences of maxima and by the length of data blocks over which the maxima are computed are critically analyzed. Issues related to model sensitivity are also explored by varying the resolution of the system. The method used in this paper is put forward as a rigorous framework for the statistical analysis of extremes of observed data, to study the past and present climate and to characterize its variations.


Journal of the Atmospheric Sciences | 2007

Extreme value statistics of the total energy in an intermediate-complexity model of the midlatitude atmospheric jet. Part II Trend detection and assessment

Mara Felici; Valerio Lucarini; Antonio Speranza; Renato Vitolo

Abstract A baroclinic model for the atmospheric jet at middle latitudes is used as a stochastic generator of nonstationary time series of the total energy of the system. A linear time trend is imposed on the parameter TE, descriptive of the forced equator-to-pole temperature gradient and responsible for setting the average baroclinicity in the model. The focus lies on establishing a theoretically sound framework for the detection and assessment of trend at extreme values of the generated time series. This problem is dealt with by fitting time-dependent generalized extreme value (GEV) models to sequences of yearly maxima of the total energy. A family of GEV models is used in which the location μ and scale parameters σ depend quadratically and linearly on time, respectively, while the shape parameter ξ is kept constant. From this family, a GEV model is selected with Akaike’s information criterion, complemented by the likelihood ratio test and by assessment through standard graphical diagnostics. The inferre...


Journal of the Atmospheric Sciences | 2007

Extreme value statistics of the total energy in an intermediate-complexity model of the midlatitude atmospheric jet. Part I Stationary case

Mara Felici; Valerio Lucarini; Antonio Speranza; Renato Vitolo

A baroclinic model of intermediate complexity for the atmospheric jet at middle latitudes is used as a stochastic generator of atmosphere-like time series. In this case, time series of the total energy of the system are considered. Statistical inference of extreme values is applied to sequences of yearly maxima extracted from the time series in the rigorous setting provided by extreme value theory. The generalized extreme value (GEV) family of distributions is used here as a basic model, both for its qualities of simplicity and its generality. Several physically plausible values of the parameter T E , which represents the forced equator-to-pole temperature gradient and is responsible for setting the average baroclinicity in the atmospheric model, are used to generate stationary time series of the total energy. Estimates of the three GEV parameters-location, scale, and shape-are inferred by maximum likelihood methods. Standard statistical diagnostics, such as return level and quantile-quantile plots, are systematically applied to assess goodness-of-fit. The GEV parameters of location and scale are found to have a piecewise smooth, monotonically increasing dependence on T E . The shape parameter also increases with T E but is always negative, as is required a priori by the boundedness of the total energy. The sensitivity of the statistical inferences is studied with respect to the selection procedure of the maxima: the roles occupied by the length of the sequences of maxima and by the length of data blocks over which the maxima are computed are critically analyzed. Issues related to model sensitivity are also explored by varying the resolution of the system. The method used in this paper is put forward as a rigorous framework for the statistical analysis of extremes of observed data, to study the past and present climate and to characterize its variations.


Journal of the Atmospheric Sciences | 1981

Local Multiple Equilibria and Regional Atmospheric Blocking

P. Malguzzi; Antonio Speranza

Abstract Stationary flow of a barotropic fluid in a β channel has been shown by Charney and De Vore (1979) to possess multiple-equilibrium solutions when sinusoidal topographic forcing is exerted within the region of resonance near the wavenumber of stationary Rossby waves, and nonlinear effects are taken into account. Charney and De Vore associate the different solutions with zonal and blocking states of global circulation. However, real topography is non-sinusoidal and, most of the time, observed blocking configurations display a pronounced regional character. On the other hand, the problem of superimposing different harmonics is made difficult here by the essential role played by nonlinearity in the theory of multiple equilibria. In this paper, the mathematical problem of determining the stationary states of flow of barotropic fluid in a β plane when topography is nonsinusoidal is analyzed with the help of the perturbative assumptions that the latitudinal scale of the flow is very large and topography ...


Journal of the Atmospheric Sciences | 1984

Instabilities of a Baroclinic Flow Related to Topographic Forcing

A. Buzzi; A. Trevisan; Antonio Speranza

Abstract The presence of bottom topography in a baroclinic flow modifies the properties of the propagating baroclinic unstable modes and allows for the appearance of new unstable modes which are nonpropagating, as first shown by Charney and Straus. Mountain form-drag, which provides a coupling mechanism between the zonal flow and the waves, is the essential ingredient for topographic instability. In this paper, the properties of instability for both zonally symmetric and asymmetric baroclinic basic states in the presence of topographic forcing are investigated. The results in a two-layer and a continuously stratified atmosphere are also compared and discussed. We find that two different types of topographic instability exist, one which is essentially baroclinic and is present in symmetric and asymmetric basic states, the other which is mixed barotropic-baroclinic and is present only in asymmetric basic states.

Collaboration


Dive into the Antonio Speranza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Sutera

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

F. Vespe

Agenzia Spaziale Italiana

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge