Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Tristán-Vega is active.

Publication


Featured researches published by Antonio Tristán-Vega.


Magnetic Resonance Imaging | 2009

Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models

Santiago Aja-Fernández; Antonio Tristán-Vega; Carlos Alberola-López

Noise estimation is a challenging task in magnetic resonance imaging (MRI), with applications in quality assessment, filtering or diffusion tensor estimation. Main noise estimators based on the Rician model are revisited and classified in this article, and new useful methods are proposed. Additionally, all the surveyed estimators are extended to the noncentral chi model, which applies to multiple-coil MRI and some important parallel imaging algorithms for accelerated acquisitions. The proposed new noise estimation procedures, based on the distribution of local moments, show better performance in terms of smaller variance and unbiased estimation over a wide range of experiments, with the additional advantage of not needing to explicitly segment the background of the image.


NeuroImage | 2009

Estimation of fiber Orientation Probability Density Functions in High Angular Resolution Diffusion Imaging

Antonio Tristán-Vega; Carl-Fredrik Westin; Santiago Aja-Fernández

An estimator of the Orientation Probability Density Function (OPDF) of fiber tracts in the white matter of the brain from High Angular Resolution Diffusion data is presented. Unlike Q-Balls, which use the Funk-Radon transform to estimate the radial projection of the 3D Probability Density Function, the Jacobian of the spherical coordinates is included in the Funk-Radon approximation to the radial integral. Thus, true angular marginalizations are computed, which allows a strict probabilistic interpretation. Extensive experiments with both synthetic and real data show the better capability of our method to characterize complex micro-architectures compared to other related approaches (Q-Balls and Diffusion Orientation Transform), especially for low values of the diffusion weighting parameter.


Medical Image Analysis | 2010

DWI filtering using joint information for DTI and HARDI.

Antonio Tristán-Vega; Santiago Aja-Fernández

The filtering of the Diffusion Weighted Images (DWI) prior to the estimation of the diffusion tensor or other fiber Orientation Distribution Functions (ODF) has been proved to be of paramount importance in the recent literature. More precisely, it has been evidenced that the estimation of the diffusion tensor without a previous filtering stage induces errors which cannot be recovered by further regularization of the tensor field. A number of approaches have been intended to overcome this problem, most of them based on the restoration of each DWI gradient image separately. In this paper we propose a methodology to take advantage of the joint information in the DWI volumes, i.e., the sum of the information given by all DWI channels plus the correlations between them. This way, all the gradient images are filtered together exploiting the first and second order information they share. We adapt this methodology to two filters, namely the Linear Minimum Mean Squared Error (LMMSE) and the Unbiased Non-Local Means (UNLM). These new filters are tested over a wide variety of synthetic and real data showing the convenience of the new approach, especially for High Angular Resolution Diffusion Imaging (HARDI). Among the techniques presented, the joint LMMSE is proved a very attractive approach, since it shows an accuracy similar to UNLM (or even better in some situations) with a much lighter computational load.


Magnetic Resonance in Medicine | 2011

Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model

Santiago Aja-Fernández; Antonio Tristán-Vega; W. Scott Hoge

The characterization of the distribution of noise in the magnitude MR image is a very important problem within image processing algorithms. The Rician noise assumed in single‐coil acquisitions has been the keystone for signal‐to‐noise ratio estimation, image filtering, or diffusion tensor estimation for years. With the advent of parallel protocols such as sensitivity encoding or Generalized Autocalibrated Partially Parallel Acquisitions that allow accelerated acquisitions, this noise model no longer holds. Since Generalized Autocalibrated Partially Parallel Acquisitions reconstructions yield the combination of the squared signals recovered at each receiving coil, noncentral Chi statistics have been previously proposed to model the distribution of noise. However, we prove in this article that this is a weak model due to several artifacts in the acquisition scheme, mainly the correlation existing between the signals obtained at each coil. Alternatively, we propose to model such correlations with a reduction in the number of degrees of freedom of the signal, which translates in an equivalent nonaccelerated system with a minor number of independent receiving coils and, consequently, a lower signal‐to‐noise ratio. With this model, a noncentral Chi distribution can be assumed for all pixels in the image, whose effective number of coils and effective variance of noise can be explicitly computed in a closed form from the Generalized Autocalibrated Partially Parallel Acquisitions interpolation coefficients. Extensive experiments over both synthetic and in vivo data sets have been performed to show the goodness of fit of out model. Magn Reson Med, 2010.


Journal of Neuroimaging | 2015

The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery

Sonia Pujol; William M. Wells; Carlo Pierpaoli; C. Brun; James C. Gee; Guang Cheng; Baba C. Vemuri; Olivier Commowick; Sylvain Prima; Aymeric Stamm; Maged Goubran; Ali R. Khan; Terry M. Peters; Peter F. Neher; Klaus H. Maier-Hein; Yundi Shi; Antonio Tristán-Vega; Gopalkrishna Veni; Ross T. Whitaker; Martin Styner; Carl-Fredrik Westin; Sylvain Gouttard; Isaiah Norton; Laurent Chauvin; Hatsuho Mamata; Guido Gerig; Arya Nabavi; Alexandra J. Golby; Ron Kikinis

Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography‐derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery. The purpose of this empirical study was to evaluate different tractography techniques in the first DTI Challenge workshop.


NeuroImage | 2010

A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk-Radon transform

Antonio Tristán-Vega; Carl-Fredrik Westin; Santiago Aja-Fernández

The Funk-Radon Transform (FRT) is a powerful tool for the estimation of fiber populations with High Angular Resolution Diffusion Imaging (HARDI). It is used in Q-Ball imaging (QBI), and other HARDI techniques such as the recent Orientation Probability Density Transform (OPDT), to estimate fiber populations with very few restrictions on the diffusion model. The FRT consists in the integration of the attenuation signal, sampled by the MRI scanner on the unit sphere, along equators orthogonal to the directions of interest. It is easily proved that this calculation is equivalent to the integration of the diffusion propagator along such directions, although a characteristic blurring with a Bessel kernel is introduced. Under a different point of view, the FRT can be seen as an efficient way to compute the angular part of the integral of the attenuation signal in the plane orthogonal to each direction of the diffusion propagator. In this paper, Stokes theorem is used to prove that the FRT can in fact be used to compute accurate estimates of the true integrals defining the functions of interest in HARDI, keeping the diffusion model as little restrictive as possible. Varying the assumptions on the attenuation signal, we derive new estimators of fiber orientations, generalizing both Q-Balls and the OPDT. Extensive experiments with both synthetic and real data have been intended to show that the new techniques improve existing ones in many situations.


Magnetic Resonance Imaging | 2014

Noise estimation in parallel MRI: GRAPPA and SENSE

Santiago Aja-Fernández; Gonzalo Vegas-Sánchez-Ferrero; Antonio Tristán-Vega

Parallel imaging methods allow to increase the acquisition rate via subsampled acquisitions of the k-space. SENSE and GRAPPA are the most popular reconstruction methods proposed in order to suppress the artifacts created by this subsampling. The reconstruction process carried out by both methods yields to a variance of noise value which is dependent on the position within the final image. Hence, the traditional noise estimation methods - based on a single noise level for the whole image - fail. In this paper we propose a novel methodology to estimate the spatial dependent pattern of the variance of noise in SENSE and GRAPPA reconstructed images. In both cases, some additional information must be known beforehand: the sensitivity maps of each receiver coil in the SENSE case and the reconstruction coefficients for GRAPPA.


Magnetic Resonance in Medicine | 2012

Influence of noise correlation in multiple-coil statistical models with sum of squares reconstruction

Santiago Aja-Fernández; Antonio Tristán-Vega

Noise in the composite magnitude signal from multiple‐coil systems is usually assumed to follow a noncentral χ distribution when sum of squares is used to combine images sensed at different coils. However, this is true only if the variance of noise is the same for all coils, and no correlation exists between them. We show how correlations may be obviated from this model if effective values are considered. This implies a reduced effective number of coils and an increased effective variance of noise. In addition, the effective variance of noise becomes signal‐dependent. Magn Reson Med, 2012.


Magnetic Resonance Imaging | 2013

Effective noise estimation and filtering from correlated multiple-coil MR data

Santiago Aja-Fernández; Véronique Brion; Antonio Tristán-Vega

Modern magnetic resonance (MR) imaging protocols based on multiple-coil acquisitions have carried on a new attention to noise and signal statistical modeling, as long as most of the existing techniques for data processing are model based. In particular, nonaccelerated multiple-coil and GeneRalized Autocalibrated Partially Parallel Acquisitions (GRAPPA) have brought noncentral-χ (nc-χ) statistics into stake as a suitable substitute for traditional Rician distributions. However, this model is only valid when the signals received by each coil are roughly uncorrelated. The recent literature on this topic suggests that this is often not the case, so nc-χ statistics are in principle not adequate. Fortunately, such model can be adapted through the definition of a set of effective parameters, namely, an effective noise power (greater than the actual power of thermal noise in the Radio Frequency receiver) and an effective number of coils (smaller than the actual number of RF receiving coils in the system). The implications of these artifacts in practical algorithms have not been discussed elsewhere. In the present paper, we aim to study their actual impact and suggest practical rules to cope with them. We define the main noise parameters in this context, introducing a new expression for the effective variance of noise which is of capital importance for the two image processing problems studied: first, we propose a new method to estimate the effective variance of noise from the composite magnitude signal of MR data when correlations are assumed. Second, we adapt several model-based image denoising techniques to the correlated case using the noise estimation techniques proposed. We show, through a number of experiments with synthetic, phantom, and in vivo data, that neglecting the correlated nature of noise in multiple-coil systems implies important errors even in the simplest cases. At the same time, the proper statistical characterization of noise through effective parameters drives to improved accuracy (both qualitatively and quantitatively) for both of the problems studied.


medical image computing and computer assisted intervention | 2011

Parallel MRI noise correction: an extension of the LMMSE to non central χ distributions

Véronique Brion; Cyril Poupon; Olivier Riff; Santiago Aja-Fernández; Antonio Tristán-Vega; Jean-François Mangin; Denis Le Bihan; Fabrice Poupon

Parallel MRI leads to magnitude data corrupted by noise described in most cases as following a Rician or a non central chi distribution. And yet, very few correction methods perform a non central chi noise removal. However, this correction step, adapted to the correct noise model, is of very much importance, especially when working with Diffusion Weighted MR data yielding a low SNR. We propose an extended Linear Minimum Mean Square Error estimator (LMMSE), which is adapted to deal with non central chi distributions. We demonstrate on simulated and real data that the extended LMMSE outperforms the original LMMSE on images corrupted by a non central chi noise.

Collaboration


Dive into the Antonio Tristán-Vega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl-Fredrik Westin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Sosa-Cabrera

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

Juan Ruiz-Alzola

University of Las Palmas de Gran Canaria

View shared research outputs
Researchain Logo
Decentralizing Knowledge