Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where António V. Xavier is active.

Publication


Featured researches published by António V. Xavier.


Journal of Magnetic Resonance | 1973

Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum

Iain D. Campbell; Christopher M. Dobson; Ruth Williams; António V. Xavier

Abstract Methods are described which improve the resolution of a complex NMR spectrum by subtracting a broadened spectrum from the original one. The broadening is brought about either by multiplying a transient response by an exponentially decaying function or by introducing a paramagnetic ion. The methods are analysed and are illustrated using the 270 MHz spectra of human and hen egg white lysozymes. The improvement in resolution is such that relaxation and shift measurements may be performed in regions of the spectrum previously thought inaccessible.


Inorganica Chimica Acta | 1998

The immobilisation of proteins in carbon nanotubes

Jason J. Davis; Marcolm L.H. Green; H. Allen O. Hill; Yun C. Leung; Peter J. Sadler; Jeremy Sloan; António V. Xavier; Shik Chi Tsang

Carbon nanotubes, fullerene-related structures, have been used for the immobilisation of proteins and enzymes. We have been able to demonstrate, for the first time, direct imaging by high resolution transmission electron microscopy of Zn2Cd5-metallothionein, cytochromes c, c, and β-lactamase 1. This was achieved, without modification, because the biomolecules encapsulated within nanotubes appear to be shielded from the consequences of exposure to the intense electron beam. The results indicate that the internal surface of the nanotubes interacts strongly with the enzymes resulting in their immobilisation. In some cases, the proteines are seen to be distorted giving a concave meniscus inside the tubes. Single protein molecules, their dimers, tetramers and higher oligomers are observed inside the central cavity. Comparison of the catalytic activities of immobilised β-lactamase 1 on or in nanotubes with the free enzyme in the hydrolysis of penicillin, however, showed a significant amount of the immobilised enzyme remained catalytically active, implying that no drastic conformational change had taken place. The carbon nanotube appears to act as a benign host in its ability to encapsulate protein molecules within an environment which offers some protection.


Nature Structural & Molecular Biology | 2000

Structure of a Dioxygen Reduction Enzyme from Desulfovibrio Gigas

Carlos Frazão; Gabriela Silva; Cláudio M. Gomes; Pedro M. Matias; Ricardo Coelho; Larry C. Sieker; Sofia Macedo; Ming Y. Liu; Solange Oliveira; Miguel Teixeira; António V. Xavier; Claudina Rodrigues-Pousada; Maria Arménia Carrondo; Jean Le Gall

Desulfovibrio gigas is a strict anaerobe that contains a well-characterized metabolic pathway that enables it to survive transient contacts with oxygen. The terminal enzyme in this pathway, rubredoxin:oxygen oxidoreductase (ROO) reduces oxygen to water in a direct and safe way. The 2.5 Å resolution crystal structure of ROO shows that each monomer of this homodimeric enzyme consists of a novel combination of two domains, a flavodoxin-like domain and a Zn-β-lactamase-like domain that contains a di-iron center for dioxygen reduction. This is the first structure of a member of a superfamily of enzymes widespread in strict and facultative anaerobes, indicating its broad physiological significance.


Journal of Biological Chemistry | 1997

STUDIES ON THE REDOX CENTERS OF THE TERMINAL OXIDASE FROM DESULFOVIBRIO GIGAS AND EVIDENCE FOR ITS INTERACTION WITH RUBREDOXIN

Cláudio M. Gomes; Gabriela Silva; Solange Oliveira; Jean LeGall; Ming-Yih Liu; António V. Xavier; Claudina Rodrigues-Pousada; Miguel Teixeira

Rubredoxin-oxygen oxidoreductase (ROO) is the final component of a soluble electron transfer chain that couples NADH oxidation to oxygen consumption in the anaerobic sulfate reducerDesulfovibrio gigas. It is an 86-kDa homodimeric flavohemeprotein containing two FAD molecules, one mesoheme IX, and one Fe-uroporphyrin I per monomer, capable of fully reducing oxygen to water. EPR studies on the native enzyme reveal two components with g values at ∼2.46, 2.29, and 1.89, which are assigned to low spin hemes and are similar to the EPR features of P-450 hemes, suggesting that ROO hemes have a cysteinyl axial ligation. At pH 7.6, the flavin redox transitions occur at 0 ± 15 mV for the quinone/semiquinone couple and at −130 ± 15 mV for the semiquinone/hydroquinone couple; the hemes reduction potential is −350 ± 15 mV. Spectroscopic studies provided unequivocal evidence that the flavins are the electron acceptor centers from rubredoxin, and that their reduction proceed through an anionic semiquinone radical. The reaction with oxygen occurs in the flavin moiety. These data are strongly corroborated by the finding that rubredoxin and ROO are located in the same polycistronic unit of D. gigas genome. For the first time, a clear role for a rubredoxin in a sulfate-reducing bacterium is presented.


Biochemical and Biophysical Research Communications | 1982

The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibriogigas

Jean LeGall; P.O. Ljungdahl; Isabel Moura; Harry D. Peck; António V. Xavier; J.J.G. Moura; M. Teixera; B H Huynh; D.V. DerVartanian

Abstract A new and improved method for the purification of the periplasmic hydrogenase from Desulfovibrio gigas is described. This preparation of hydrogenase was found to contain 0.64 g atom of nickel per mole of protein. In the oxidized state, the hydrogenase exhibited an isotropic signal at g = 2.02 and a characteristic Ni(III) signal with g-values at 2.31, 2.20 and ∼2.0. The EPR spectrum of the reduced enzyme consisted of multiple species. One set of g-values are determined as 2.17, 2.08 and 2.04. The other minor species exhibited a resonance at g = 2.28. On partial reoxidation of the hydrogenase, the initial Ni(III) signals reappeared along with additional signals attributed to multiple Ni(III) species. It is proposed that Ni is an important functional unit in this hydrogenase.


Journal of Bacteriology | 2000

Purification and Characterization of an Iron Superoxide Dismutase and a Catalase from the Sulfate-Reducing Bacterium Desulfovibrio gigas

Wagner dos Santos; Isabel Pacheco; Ming-Yih Liu; Miguel Teixeira; António V. Xavier; Jean LeGall

The iron-containing superoxide dismutase (FeSOD; EC 1.15.1.1) and catalase (EC 1.11.1.6) enzymes constitutively expressed by the strictly anaerobic bacterium Desulfovibrio gigas were purified and characterized. The FeSOD, isolated as a homodimer of 22-kDa subunits, has a specific activity of 1,900 U/mg and exhibits an electron paramagnetic resonance (EPR) spectrum characteristic of high-spin ferric iron in a rhombically distorted ligand field. Like other FeSODs from different organisms, D. gigas FeSOD is sensitive to H(2)O(2) and azide but not to cyanide. The N-terminal amino acid sequence shows a high degree of homology with other SODs from different sources. On the other hand, D. gigas catalase has an estimated molecular mass of 186 +/- 8 kDa, consisting of three subunits of 61 kDa, and shows no peroxidase activity. This enzyme is very sensitive to H(2)O(2) and cyanide and only slightly sensitive to sulfide. The native enzyme contains one heme per molecule and exhibits a characteristic high-spin ferric-heme EPR spectrum (g(y,x) = 6.4, 5.4); it has a specific activity of 4,200 U/mg, which is unusually low for this class of enzyme. The importance of these two enzymes in the context of oxygen utilization by this anaerobic organism is discussed.


Nature Structural & Molecular Biology | 2003

The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans

Sofia Macedo; Célia V. Romão; Edward P. Mitchell; Pedro M. Matias; Ming Y. Liu; António V. Xavier; Jean LeGall; Miguel Teixeira; Peter F. Lindley; Maria Arménia Carrondo

The first crystal structure of a native di-iron center in an iron-storage protein (bacterio)ferritin is reported. The protein, isolated from the anaerobic bacterium Desulfovibrio desulfuricans, has the unique property of having Fe-coproporphyrin III as its heme cofactor. The three-dimensional structure of this bacterioferritin was determined in three distinct catalytic/redox states by X-ray crystallography (at 1.95, 2.05 and 2.35 Å resolution), corresponding to different intermediates of the di-iron ferroxidase site. Conformational changes associated with these intermediates support the idea of a route for iron entry into the protein shell through a pore that passes through the di-iron center. Molecular surface and electrostatic potential calculations also suggest the presence of another ion channel, distant from the channels at the three- and four-fold axes proposed as points of entry for the iron atoms.


Biochimica et Biophysica Acta | 2003

A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774.

Ricardo H. Pires; Alexandra Lourenço; Francisco Morais; Miguel Teixeira; António V. Xavier; Lígia M. Saraiva; Inês A. C. Pereira

In the anaerobic respiration of sulfate, performed by sulfate-reducing prokaryotes, reduction of the terminal electron acceptor takes place in the cytoplasm. The membrane-associated electron transport chain that feeds electrons to the cytoplasmic reductases is still very poorly characterized. In this study we report the isolation and characterization of a novel membrane-bound redox complex from Desulfovibrio desulfuricans ATCC 27774. This complex is formed by three subunits, and contains two hemes b, two FAD groups and several iron-sulfur centers. The two hemes b are low-spin, with macroscopic redox potentials of +75 and -20 mV at pH 7.6. Both hemes are reduced by menadiol, a menaquinone analogue, indicating a function for this complex in the respiratory electron-transport chain. EPR studies of the as-isolated and dithionite-reduced complex support the presence of a [3Fe-4S](1+/0) center and at least four [4Fe-4S](2+/1+) centers. Cloning of the genes coding for the complex subunits revealed that they form a putative transcription unit and have homology to subunits of heterodisulfide reductases (Hdr). The first and second genes code for soluble proteins that have homology to HdrA, whereas the third gene codes for a novel type of membrane-associated protein that contains both a hydrophobic domain with homology to the heme b protein HdrE and a hydrophilic domain with homology to the iron-sulfur protein HdrC. Homologous operons are found in the genomes of other sulfate-reducing organisms and in the genome of the green-sulfur bacterium Chlorobium tepidum TLS. The isolated complex is the first example of a new family of respiratory complexes present in anaerobic prokaryotes.


FEBS Letters | 2001

The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane‐bound oxygen‐reducing respiratory chain

Rita S. Lemos; Cláudio M. Gomes; Margarida Santana; Jean LeGall; António V. Xavier; Miguel Teixeira

Sulfate‐reducing bacteria are considered as strict anaerobic microorganisms, in spite of the fact that some strains have been shown to tolerate the transient presence of dioxygen. This report shows that membranes from Desulfovibrio gigas grown in fumarate/sulfate contain a respiratory chain fully competent to reduce dioxygen to water. In particular, a membrane‐bound terminal oxygen reductase, of the cytochrome bd family, was isolated, characterized, and shown to completely reduce oxygen to water. This oxidase has two subunits with apparent molecular masses of 40 and 29 kDa. Using NADH or succinate as electron donors, the oxygen respiratory rates of D. gigas membranes are comparable to those of aerobic organisms (3.2 and 29 nmol O2 min−1 mg protein−1, respectively). This ‘strict anaerobic’ bacterium contains all the necessary enzymatic complexes to live aerobically, showing that the relationships between oxygen and anaerobes are much more complex than originally thought.


Journal of Biological Inorganic Chemistry | 1998

Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio ssp

Inês A. C. Pereira; Célia V. Romão; António V. Xavier; Jean LeGall; Miguel Teixeira

Abstract A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c3. A similar study with D. vulgaris Hildenborough cytochrome c553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases.

Collaboration


Dive into the António V. Xavier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

José J. G. Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Isabel Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Miguel Teixeira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

David L. Turner

Molecular and Behavioral Neuroscience Institute

View shared research outputs
Top Co-Authors

Avatar

Helena Santos

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Ricardo O. Louro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge