Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonio Valentin is active.

Publication


Featured researches published by Antonio Valentin.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Persistent HIV-1 infection of natural killer cells in patients receiving highly active antiretroviral therapy.

Antonio Valentin; Margherita Rosati; Daniel J. Patenaude; Angelos Hatzakis; Leondios G. Kostrikis; Marios Lazanas; Kathleen M. Wyvill; Robert Yarchoan; George N. Pavlakis

We have identified a subset of CD56+CD3− human natural killer (NK) cells that express CD4 and the HIV coreceptors CCR5 and CXCR4. These cells can be productively infected in vitro by both CCR5- and CXCR4-using molecular clones of HIV-1 in a CD4-dependent manner. Analysis of HIV-infected persons showed that viral DNA is present in purified NK cells, and virus could be rescued from these cells after in vitro cultivation. Longitudinal analysis of the HIV-1 DNA levels in NK cells from patients after 1–2 years of highly active antiretroviral therapy indicated that NK cells remain persistently infected and account for a substantial amount of the viral DNA in peripheral blood mononuclear cells. These results demonstrate that a subset of non-T cells with NK markers are persistently infected and suggest that HIV infection of NK cells is important for virus persistence. The properties of the virus reservoir in these cells should be considered in attempts to further optimize antiretroviral therapies.


Journal of Biological Chemistry | 2008

Intracellular Interaction of Interleukin-15 with Its Receptor α during Production Leads to Mutual Stabilization and Increased Bioactivity

Cristina Bergamaschi; Margherita Rosati; Rashmi Jalah; Antonio Valentin; Viraj Kulkarni; Candido Alicea; Gen-Mu Zhang; Vainav Patel; Barbara K. Felber; George N. Pavlakis

We show that co-expression of interleukin 15 (IL-15) and IL-15 receptor α (IL-15Rα) in the same cell allows for the intracellular interaction of the two proteins early after translation, resulting in increased stability and secretion of both molecules as a complex. In the absence of co-expressed IL-15Rα, a large portion of the produced IL-15 is rapidly degraded immediately after synthesis. Co-injection into mice of IL-15 and IL-15Rα expression plasmids led to significantly increased levels of the cytokine in serum as well as increased biological activity of IL-15. Examination of natural killer cells and T lymphocytes in mouse organs showed a great expansion of both cell types in the lung, liver, and spleen. The presence of IL-15Rα also increased the number of CD44high memory cells with effector phenotype (CD44highCD62L-). Thus, mutual stabilization of IL-15 and IL-15Rα leads to remarkable increases in production, stability, and tissue availability of bioactive IL-15 in vivo. The in vivo data show that the most potent form of IL-15 is as part of a complex with its receptor α either on the surface of the producing cells or as a soluble extracellular complex. These results explain the reason for coordinate expression of IL-15 and IL-15Rα in the same cell and suggest that the IL-15Rα is part of the active IL-15 cytokine rather than part of the receptor.


Journal of Virology | 2005

DNA Vaccines Expressing Different Forms of Simian Immunodeficiency Virus Antigens Decrease Viremia upon SIVmac251 Challenge

Margherita Rosati; Agneta von Gegerfelt; Patricia Roth; Candido Alicea; Antonio Valentin; Marjorie Robert-Guroff; David Venzon; David C. Montefiori; Phil Markham; Barbara K. Felber; George N. Pavlakis

ABSTRACT We have tested the efficacy of DNA immunization as a single vaccination modality for rhesus macaques followed by highly pathogenic SIVmac251 challenge. To further improve immunogenicity of the native proteins, we generated expression vectors producing fusion of the proteins Gag and Env to the secreted chemokine MCP3, targeting the viral proteins to the secretory pathway and to a β-catenin (CATE) peptide, targeting the viral proteins to the intracellular degradation pathway. Macaques immunized with vectors expressing the MCP3-tagged fusion proteins developed stronger antibody responses. Following mucosal challenge with pathogenic SIVmac251, the vaccinated animals showed a statistically significant decrease in viral load (P = 0.010). Interestingly, macaques immunized with a combination of vectors expressing three forms of antigens (native protein and MCP3 and CATE fusion proteins) showed the strongest decrease in viral load (P = 0.0059). Postchallenge enzyme-linked immunospot values for Gag and Env as well as gag-specific T-helper responses correlated with control of viremia. Our data show that the combinations of DNA vaccines producing native and modified forms of antigens elicit more balanced immune responses able to significantly reduce viremia for a long period (8 months) following pathogenic challenge with SIVmac251.


Vaccine | 2008

Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation

Margherita Rosati; Antonio Valentin; Rashmi Jalah; Vainav Patel; Agneta von Gegerfelt; Cristina Bergamaschi; Candido Alicea; Deborah Weiss; Jim Treece; Ranajit Pal; Phillip D. Markham; Ernesto T. A. Marques; J. Thomas August; Amir R. Khan; Ruxandra Draghia-Akli; Barbara K. Felber; George N. Pavlakis

We used optimized DNA expression vectors to compare two gene delivery methodologies in rhesus macaques, namely direct DNA injection and in vivo adaptive constant-current electroporation via the intramuscular route. The use of in vivo electroporation increased levels of gene expression and immune responses. We used an optimized HIV gag expression plasmid to show the development of new cellular immune responses in SIV-infected animals controlling viremia. Furthermore, after vaccination with SIV expression plasmids the recall responses to the SIV antigens were very high, indicating that DNA is a strong boost in the presence of antiretroviral treatment in SIV-infected animals. There was substantial animal-to-animal variability in DNA expression, revealed by plasma measurements of IL-15 produced by co-injected IL-15 DNA. IL-15 expression levels correlated with peak immune responses. Electroporation led to an expansion of antigen-specific CD4+ and CD8+ T cells of both central and effector memory phenotype. These results indicate that improved gene delivery and expression by electroporation dramatically increases immunogenicity of DNA vaccines. Electroporation is thus an important method to improve the effectiveness of DNA vaccination.


Proceedings of the National Academy of Sciences of the United States of America | 2009

DNA vaccination in rhesus macaques induces potent immune responses and decreases acute and chronic viremia after SIVmac251 challenge

Margherita Rosati; Cristina Bergamaschi; Antonio Valentin; Viraj Kulkarni; Rashmi Jalah; Candido Alicea; Vainav Patel; Agneta von Gegerfelt; David C. Montefiori; David Venzon; Amir S. Khan; Ruxandra Draghia-Akli; Koen K. A. Van Rompay; Barbara K. Felber; George N. Pavlakis

Optimized plasmid DNAs encoding the majority of SIVmac239 proteins and delivered by electroporation (EP) elicited strong immune responses in rhesus macaques. Vaccination decreased viremia in both the acute and chronic phases of infection after challenge with pathogenic SIVmac251. Two groups of macaques were vaccinated with DNA plasmids producing different antigen forms, “native” and “modified,” inducing distinct immune responses. Both groups showed significantly lower viremia during the acute phase of infection, whereas the group immunized with the native antigens showed better protection during the chronic phase (1.7 log decrease in virus load, P = 0.009). Both groups developed strong cellular and humoral responses against the DNA vaccine antigens, which included Gag, Pol, Env, Nef, and Tat. Vaccination induced both central memory and effector memory T cells that were maintained at the day of challenge, suggesting the potential for rapid mobilization upon virus challenge. The group receiving the native antigens developed higher and more durable anti-Env antibodies, including neutralizing antibodies at the day of challenge. These results demonstrate that DNA vaccination in the absence of any heterologous boost can provide protection from high viremia comparable to any other vaccine modalities tested in this macaque model.


Journal of Virology | 2005

Vpr Protein of Human Immunodeficiency Virus Type 1 Binds to 14-3-3 Proteins and Facilitates Complex Formation with Cdc25C: Implications for Cell Cycle Arrest

Tomoshige Kino; Alexander Gragerov; Antonio Valentin; Maria Tsopanomihalou; Galina Ilyina-Gragerova; Rebecca Erwin-Cohen; George P. Chrousos; George N. Pavlakis

ABSTRACT Vpr and selected mutants were used in a Saccharomyces cerevisiae two-hybrid screen to identify cellular interactors. We found Vpr interacted with 14-3-3 proteins, a family regulating a multitude of proteins in the cell. Vpr mutant R80A, which is inactive in cell cycle arrest, did not interact with 14-3-3. 14-3-3 proteins regulate the G2/M transition by inactivating Cdc25C phosphatase via binding to the phosphorylated serine residue at position 216 of Cdc25C. 14-3-3 overexpression in human cells synergized with Vpr in the arrest of cell cycle. Vpr did not arrest efficiently cells not expressing 14-3-3σ. This indicated that a full complement of 14-3-3 proteins is necessary for optimal Vpr function on the cell cycle. Mutational analysis showed that the C-terminal portion of Vpr, known to harbor its cell cycle-arresting activity, bound directly to the C-terminal part of 14-3-3, outside of its phosphopeptide-binding pocket. Vpr expression shifted localization of the mutant Cdc25C S216A to the cytoplasm, indicating that Vpr promotes the association of 14-3-3 and Cdc25C, independently of the presence of serine 216. Immunoprecipitations of cell extracts indicated the presence of triple complexes (Vpr/14-3-3/Cdc25C). These results indicate that Vpr promotes cell cycle arrest at the G2/M phase by facilitating association of 14-3-3 and Cdc25C independently of the latters phosphorylation status.


Vaccine | 2010

Long-lasting humoral and cellular immune responses and mucosal dissemination after intramuscular DNA immunization.

Vainav Patel; Antonio Valentin; Viraj Kulkarni; Margherita Rosati; Cristina Bergamaschi; Rashmi Jalah; Candido Alicea; Jacob T. Minang; Matthew T. Trivett; Claes Ohlen; Jun Zhao; Marjorie Robert-Guroff; Amir S. Khan; Ruxandra Draghia-Akli; Barbara K. Felber; George N. Pavlakis

Naïve Indian rhesus macaques were immunized with a mixture of optimized plasmid DNAs expressing several SIV antigens using in vivo electroporation via the intramuscular route. The animals were monitored for the development of SIV-specific systemic (blood) and mucosal (bronchoalveolar lavage) cellular and humoral immune responses. The immune responses were of great magnitude, broad (Gag, Pol, Nef, Tat and Vif), long-lasting (up to 90 weeks post third vaccination) and were boosted with each subsequent immunization, even after an extended 90-week rest period. The SIV-specific cellular immune responses were consistently more abundant in bronchoalveolar lavage (BAL) than in blood, and were characterized as predominantly effector memory CD4(+) and CD8(+) T cells in BAL and as both central and effector memory T cells in blood. SIV-specific T cells containing Granzyme B were readily detected in both blood and BAL, suggesting the presence of effector cells with cytolytic potential. DNA vaccination also elicited long-lasting systemic and mucosal humoral immune responses, including the induction of Gag-specific IgA. The combination of optimized DNA vectors and improved intramuscular delivery by in vivo electroporation has the potential to elicit both cellular and humoral responses and dissemination to the periphery, and thus to improve DNA immunization efficacy.


Proceedings of the National Academy of Sciences of the United States of America | 2013

DNA and virus particle vaccination protects against acquisition and confers control of viremia upon heterologous simian immunodeficiency virus challenge

Vainav Patel; Rashmi Jalah; Viraj Kulkarni; Antonio Valentin; Margherita Rosati; Candido Alicea; Agneta von Gegerfelt; Wensheng Huang; Yongjun Guan; Brandon F. Keele; Julian W. Bess; Michael Piatak; Jeffrey D. Lifson; William T. Williams; Xiaoying Shen; Georgia D. Tomaras; Rama Rao Amara; Harriet L. Robinson; Welkin E. Johnson; Kate E. Broderick; Niranjan Y. Sardesai; David Venzon; Vanessa M. Hirsch; Barbara K. Felber; George N. Pavlakis

We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4+ effector memory, and postchallenge CD8+ transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.


Vaccine | 2013

HIV/SIV DNA vaccine combined with protein in a co-immunization protocol elicits highest humoral responses to envelope in mice and macaques

Jinyao Li; Antonio Valentin; Viraj Kulkarni; Margherita Rosati; Rachel Kelly Beach; Candido Alicea; Drew Hannaman; Steven G. Reed; Barbara K. Felber; George N. Pavlakis

Vaccination with HIV/SIV DNAs elicits potent T-cell responses. To improve humoral immune responses, we combined DNA and protein in a co-immunization protocol using in vivo electroporation in mice and macaques. DNA&protein co-immunization induced higher antibody responses than DNA or protein alone, or DNA prime/protein boost in mice. DNA&protein co-immunization induced similar levels of cellular responses as those obtained by DNA only vaccination. The inclusion of SIV or HIV Env gp120 protein did not impair the development of cellular immune responses elicited by DNA present in the vaccine regimen. In macaques, the DNA&protein co-immunization regimen also elicited higher levels of humoral responses with broader cross-neutralizing activity. Despite the improved immunogenicity of DNA&protein co-immunization, the protein formulation with the EM-005 (GLA-SE) adjuvant further increased the anti-Env humoral responses. Dissecting the contribution of EM-005, we found that its administration upregulated the expression of co-stimulatory molecules and stimulated cytokine production, especially IL-6, by dendritic cells in vivo. These terminally differentiated, mature, dendritic cells possibly promote higher levels of humoral responses, supporting the inclusion of the EM-005 adjuvant with the vaccine. Thus, DNA&protein co-immunization is a promising strategy to improve the rapidity of development, magnitude and potency of the humoral immune responses.


AIDS | 1990

Replicative capacity of HIV-2, like HIV-1, correlates with severity of immunodeficiency.

Jan Albert; Anders Nauclér; Blenda Böttiger; Per-Anders Broliden; Paulo Albino; Soungalo A. Ouattara; Camilla Björkegren; Antonio Valentin; Gunnel Biberfeld; Eva Maria Fenyö

We have obtained 15 HIV-2 isolates from the peripheral blood mononuclear cells (PBMCs) of 24 HIV-2-infected west African people. The frequency of virus isolation correlated with the severity of HIV-2 infection; only three isolates were obtained from 11 asymptomatic individuals, whereas virus was isolated from nearly all (12 of 13) individuals with symptoms. The HIV-2 isolates showed distinct replicative and cytopathic characteristics and, similarly to HIV-1 isolates, could be divided into two major groups: rapid/high and slow/low. Rapid/high isolates, i.e. isolates with the ability to replicate in tumour cell lines, were obtained from individuals with symptomatic HIV-2 infection and CD4+ lymphocyte counts less than 360/microliters blood; these isolates induced syncytia in PBMC cultures. HIV-2 isolates unable to replicate continuously in tumour cell lines (slow/low isolates) induced small syncytia, cell death, or no cytopathic effect at all. All HIV-2 isolates obtained from asymptomatic individuals showed a slow/low replication pattern.

Collaboration


Dive into the Antonio Valentin's collaboration.

Top Co-Authors

Avatar

George N. Pavlakis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barbara K. Felber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Margherita Rosati

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Candido Alicea

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Viraj Kulkarni

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cristina Bergamaschi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vainav Patel

National Institute for Research in Reproductive Health

View shared research outputs
Top Co-Authors

Avatar

Jenifer Bear

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge