Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonios E. Papadakis is active.

Publication


Featured researches published by Antonios E. Papadakis.


Medical Physics | 2008

Automatic exposure control in pediatric and adult multidetector CT examinations: A phantom study on dose reduction and image quality

Antonios E. Papadakis; Kostas Perisinakis; John Damilakis

The aim of this study was to assess the potential of a modern x,y,z modulation-based automatic exposure control system (AEC) for dose reduction in pediatric and adult multidetector CT (MDCT) imaging and evaluate the quality of the images obtained. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-, 5-, 10-year old child, and adult were scanned with a MDCT scanner, equipped with a modern AEC system. Dose reduction (%DR) was calculated as the percentage difference of the mean modulated and the preset tube current-time product that is prescribed for standard head and body scan protocols. The effect of the tube potential and the orientation of the topogram acquisition on dose reduction were assessed. Image quality was evaluated on the basis of image noise and signal to noise ratio (SNR). The dose reduction values achieved in pediatric phantoms were remarkably lower than those achieved for the adult. The efficiency of the AEC is decreased at 80 kVp compared to higher tube potentials and for helical scans following an anterior posterior (AP-AEC) compared to a lateral (LAT-AEC) topogram acquisition. In AP-AEC scans, the dose reduction ranged between 4.7 and 34.7% for neonate, 15.4 and 30.9% for 1 year old, 3.1 and 26.7% for 5 years old, 1.2 and 58.7% for 10 years old, and 15.5 and 57.4% for adult. In LAT-AEC scans, the corresponding dose reduction ranged between 11.0 and 36.5%, 27.2 and 35.7%, 11.3 and 35.6%, 0.3 and 67.0%, and 15.0 and 61.7%, respectively. AP-AEC scans resulted in a 17.1% and 19.7% dose increase in the thorax of neonate and the pelvis of the 10-year old phantom, respectively. The variation in the measured noise among images obtained along the scanning z axis was lower in AEC activated compared to fixed milliamperes scans. However, image noise was significantly increased (P<.001) and SNR significantly decreased (P<.001) in most AEC activated compared to fixed milliamperes scans. In conclusion, AEC resulted in a (i) substantial dose reduction, which is less pronounced in children compared to adult, (ii) higher dose reduction in scans following a lateral compared to scans following an anterior-posterior topogram acquisition, (iii) increase of image noise and degradation of SNR in the obtained images compared to the fixed milliamperes technique.


Medical Physics | 2007

Angular on‐line tube current modulation in multidetector CT examinations of children and adults: The influence of different scanning parameters on dose reduction

Antonios E. Papadakis; Kostas Perisinakis; John Damilakis

The purpose of this study was to assess the potential of angular on-line tube current modulation on dose reduction in pediatric and adult patients undergoing multidetector computed tomography (MDCT) examinations. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-year-old, 5-year-old, 10-year-old, and adult were employed in the current study. Phantoms were scanned with the use of on-line tube current modulation (TCM). Percent dose reduction (%DR) factors achieved by applying TCM, were determined for standard protocols used for head and neck, shoulder, thorax, thorax and abdomen, abdomen, abdomen and pelvis, pelvis, and whole body examinations. A preliminary study on the application of TCM in MDCT examinations of adult patients was performed to validate the results obtained in anthropomorphic phantoms. Dose reduction was estimated as the percentage difference of the modulated milliamperes for each scan and the preset milliamperes prescribed by the scan protocol. The dose reduction in children was found to be much lower than the corresponding reduction achieved for adults. For helical scans the %DR factors, ranged between 1.6% and 7.4% for the neonate, 2.9% and 8.7% for the 1-year old, 2% and 6% for the 5-year-old, 5% and 10.9% for the 10-year-old, and 10.4% and 20.7% for the adult individual. For sequential scans the corresponding %DR factors ranged between 1.3% and 6.7%, 4.5% and 11%, 4.2% and 6.6%, 6.4% and 12.3%, and 8.9% and 23.3%, respectively. Broader beam collimations are associated with decreased %DR factors, when other scanning parameters are held constant. TCM did not impair image noise. In adult patients, the %DR values were found to be in good agreement with the corresponding results obtained in the anthropomorphic adult phantom. In conclusion, on-line TCM may be considered as a valuable tool for reducing dose in routine CT examinations of pediatric and adult patients. However, the dose reduction achieved with TCM in neonates and young children was found to be lower than that obtained for adults. Therefore, on-line TCM should work as an additional means to reduce dose and should not replace other conventional means of reducing dose, especially in neonates and young children.


IEEE Transactions on Medical Imaging | 2010

A New Optical-CT Apparatus for 3-D Radiotherapy Dosimetry: Is Free Space Scanning Feasible?

Antonios E. Papadakis; Giannis Zacharakis; Thomas G. Maris; Jorge Ripoll; John Damilakis

In this paper, we present a new optical computed tomography (Optical-CT) scanner for the verification of the radiation dose schemes delivered in modern radiotherapy applications. The optical-CT scanner is capable of providing rapid relative 3-D dosimetry with high spatial resolution with the use of normoxic N-Vinylpyrrolidone based polymer gel dosimeter. The scanner employs a diffuse uncollimated light illumination beam, a computer controlled motorized rotation stage and a charge-coupled device (CCD) camera. Various test experiments were performed to determine the performance characteristics of the optical-CT apparatus. Attenuation coefficient (¿ ) versus dose calibration data were generated from two calibration experiments using gel containers of two different diameters. All irradiations were performed using a 6 MV linear accelerator. A comparison of the reconstructed images between optical-CT scans using refractive index (RI) matching fluid and corresponding scans performed in free space was demonstrated. The dose readout of a test irradiation model was found to be in good agreement with independent readout performed by MR imaging. The findings presented in this study suggest that polymer dosimeters combined with the new optical-CT scanner constitute a potentially feasible method capable of measuring complex 3-D dose distributions with high resolution and in a wide dose range.


Radiology | 2010

Radiation Dose to the Conceptus from Multidetector CT during Early Gestation: A Method That Allows for Variations in Maternal Body Size and Conceptus Position

John Damilakis; Kostas Perisinakis; Antonis Tzedakis; Antonios E. Papadakis; Apostolos H. Karantanas

PURPOSE To develop a method for estimating the radiation dose to the conceptus from multidetector computed tomography (CT) of the abdomen and pelvis in pregnant patients during the first 7 weeks of gestation. MATERIALS AND METHODS This study was approved by the institutional review board and informed consent was obtained. A CT simulation software package was used to (a) develop voxelized models on the basis of image data from 117 nonpregnant patients who underwent abdominal and pelvic multidetector CT and (b) calculate dose at a position of the uterus assumed to be the position of the conceptus in case of pregnancy during the first 7 weeks of gestation. Regression analysis was carried out to establish the relationship among conceptus dose, patient body size, and distance from the conceptus to the anterior skin surface. RESULTS Normalized conceptus doses calculated by using the software package ranged from 0.335 to 0.785 mGy per absorbed dose to air. Conceptus dose showed a significant correlation with maternal body size and conceptus depth (R² = 0.793, P < .001). A multivariable correlation of conceptus dose normalized to the free-in-air CT dose index (CTDI(F)) with conceptus depth and patient perimeter was produced for estimating conceptus dose from abdominal and pelvic multidetector CT. Conceptus dose data provided for a specific scanner can be applied to other scanners by using correction factors based on ratios between the weighted CT dose index and CTDI(F), resulting in inaccuracies in the estimation of conceptus dose of less than 12%. CONCLUSION The radiation dose to the conceptus from abdominal and pelvic multidetector CT can be estimated with a method that allows for variations in maternal body size and conceptus position.


Circulation | 2010

Individualized Assessment of Radiation Dose in Patients Undergoing Coronary Computed Tomographic Angiography With 256-Slice Scanning

Kostas Perisinakis; Ioannis Seimenis; Antonis Tzedakis; Antonios E. Papadakis; John Damilakis

Background— Available data on the radiation burden from coronary computed tomography (CT) angiography (CCTA) are mostly limited to effective dose estimates. This study provides individualized estimates of doses and associated life attributable risks of radiation-induced cancer in a clinical patient population undergoing 256-slice CCTA. Methods and Results— Typical retrospectively and prospectively ECG-gated CCTA exposures in a 256-slice CT scanner were simulated on 52 patient-specific voxelized phantoms. Dose images depicting the dose deposition on the exposed region were generated, and normalized organ doses for all primarily irradiated radiosensitive organs were derived and correlated to patient body habitus. Lung, breast, and esophagus absorbed doses were then determined in 136 consecutive patients subjected to CCTA. Projected life attributable risks of radiation-induced cancer were estimated through the use of appropriate sex-, age- and organ-specific cancer risk factors and compared with corresponding nominal cancer risks. The total projected life attributable risk of radiogenic cancer after CCTA decreases steeply with age at exposure, and lung cancer constitutes the most probable detriment for both sexes. The relative risks of lung cancer associated with prospectively ECG-gated CCTA were 1.0032 and 1.0008 for women and men, respectively. The mean total projected life attributable risks were estimated to be 24.9±7.4 and 71.5±30.0 per 100 000 women undergoing prospectively and retrospectively ECG-gated CCTA, respectively. The corresponding values for men were 7.3±1.3 and 31.4±5.0 per 100 000 patients. Conclusions— The mean projected life attributable risks of radiation-induced cancer in a typical clinical patient cohort undergoing standard prospectively ECG-gated CCTA with a 256-slice scanner were found to inconsequentially increase the natural cancer incidence rates.


Investigative Radiology | 2012

Triple-rule-out computed tomography angiography with 256-slice computed tomography scanners: patient-specific assessment of radiation burden and associated cancer risk.

Kostas Perisinakis; Ioannis Seimenis; Antonis Tzedakis; Antonios E. Papadakis; John Damilakis

Objectives:Risk-benefit analysis of triple-rule-out 256-slice computed tomography angiography (TRO-CTA) requires data on associated cancer risks, currently not available. The aim of the current study was to provide estimates of patient radiation burden and lifetime attributable risk (LAR) of radiation-induced cancer in patients undergoing typical 256-slice TRO-CTA. Materials and Methods:Standard step-and-shoot 256-slice TRO-CTA exposures were simulated on 31 male and 31 female individual-specific voxelized phantoms using a Monte Carlo CT dosimetry software. Dose images were generated depicting the dose deposition on the exposed body region of the patient. Organ doses were obtained for all primarily irradiated radiosensitive organs. Organ doses were correlated to patient body size. TRO-CTA effective dose was estimated from (a) organ doses and (b) dose-length product data. Recently published sex-, age-, and organ-specific cancer risk factors were used to estimate the total LAR of radiation-induced cancer. The theoretical risks of radiation-induced cancer to the lung and breast following a 256-slice TRO-CTA were compared with the corresponding nominal risks for each of the studied patients. Results:The highest organ doses were observed for the breast, heart, esophagus, and lung. Mean effective dose estimated using organ dose data was found to be 6.5 ± 1.0 mSv for female and 3.8 ± 0.7 mSv for male individuals subjected to 256-slice TRO-CTA. The associated mean LARs of cancer was found to be 41 per 105 female and 17 per 105 male patients. The total radiation-induced cancer risk was found to markedly decrease with patient age. TRO-CTA exposure was found to increase the intrinsic risks of developing lung or breast cancer during the remaining lifetime by less than 0.5% and 0.1%, respectively. Conclusions:The mean theoretical risk of radiation-induced cancer for a patient cohort subjected to step-and-shoot 256-slice TRO-CTA may be considered to be low compared with the intrinsic risk of developing cancer.


Medical Physics | 2010

A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

John Damilakis; Antonis Tzedakis; Kostas Perisinakis; Antonios E. Papadakis

PURPOSE Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. METHODS The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulating women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. RESULTS The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. CONCLUSIONS Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made using the method developed in the current study.


Investigative Radiology | 2013

Effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral pediatric and adult CT angiography: a phantom study.

Antonios E. Papadakis; Kostas Perisinakis; Maria Raissaki; John Damilakis

ObjectivesThe aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Materials and MethodsFour physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. ResultsImage noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r2 = 0.907) and vessel diameter (r2 = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. For the same CNR, a reduction by 25% of the administered CM concentration may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. ConclusionsIn cerebral CT angiographic studies, appropriate adjustment of the preset tube current-time product settings is required to achieve the same image noise level among participants of different age. Cerebral CT angiography at 80 kV significantly improves CNR and significantly reduces radiation dose. Moreover, at 80 kV, a considerable reduction of the administered amount of the CM may be reached, thus reducing potential risks for contrast-induced nephropathy.


Medical Physics | 2013

The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256‐slice CT: How can we minimize the risk for deterministic effects?

Kostas Perisinakis; Ioannis Seimenis; Antonis Tzedakis; Antonios E. Papadakis; John Damilakis

PURPOSE To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size∕shape, head position during the examination and bowtie filter used on peak tissue doses. METHODS The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peak tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size∕shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. RESULTS The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of signal-to-noise ratio mainly to the peripheral region of the phantom. CONCLUSIONS Despite typical peak doses to skin, eye lens, brain, and RBM from the standard low-dose brain perfusion 256-slice CT protocol are well below the corresponding thresholds for the induction of erythema, cataract, cerebrovascular disease, and depression of hematopoiesis, respectively, every effort should be made toward optimization of the procedure and minimization of dose received by these tissues. The current study provides evidence that the use of the narrower bowtie filter available may considerably reduce peak absorbed dose to all above radiosensitive tissues with minimal deterioration in image quality. Considerable reduction in peak eye-lens dose may also be achieved by positioning patient head center a few centimeters above isocenter during the exposure.


Investigative Radiology | 2012

Screening computed tomography colonography with 256-slice scanning: should patient radiation burden and associated cancer risk constitute a major concern?

Kostas Perisinakis; Ioannis Seimenis; Antonis Tzedakis; Antonios E. Papadakis; Kalliopi M. Kourinou; John Damilakis

ObjectivesThe aim of this study was to determine the radiation burden and the lifetime attributable risk (LAR) of radiation-induced cancer in patients undergoing screening 256-slice computed tomography colonography (CTC) and compare CTC-related radiogenic risks to corresponding nominal lifetime intrinsic risk of cancer. Materials and MethodsA Monte Carlo simulation software dedicated for computed tomography (CT) dosimetry was used to determine absorbed doses to primarily exposed radiosensitive organs of 31 women and 29 men subjected to screening CTC on a 256-slice CT scanner. Effective dose was estimated from (a) organ dose data and (b) dose-length product. Organ-specific and total LARs of cancer were estimated using published risk factors. Cumulative LARs from repeated CTC studies on individuals participating in a colorectal cancer screening program were compared with corresponding lifetime intrinsic risks. ResultsThe mean organ dose-derived effective dose was estimated to be 2.92 and 2.61 mSv for female and male individuals, respectively. The dose-length product method was found to overestimate effective dose from CTC by 26% and 13% in female and male individuals, respectively. Compared with previously published results for 64-slice CT scanners, 256-slice CTC was found to be associated with up to 45% less radiation burden. The cumulative LAR of radiation-induced cancer from repeated quinquennial screening CTC studies between the ages of 50 and 80 years was estimated to increase the lifetime intrinsic risk of cancer by less than 0.2%. ConclusionThe level of patient radiation burden and theoretical radiogenic cancer risks associated with screening CTC performed using modern low-dose protocols and techniques may not justify disapproval of CTC as a mass screening tool.

Collaboration


Dive into the Antonios E. Papadakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evangelos Pappas

Technological Educational Institute of Athens

View shared research outputs
Top Co-Authors

Avatar

Ioannis Seimenis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge