Antonios Liapis
University of Malta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonios Liapis.
IEEE Transactions on Computational Intelligence and Ai in Games | 2012
Antonios Liapis; Georgios N. Yannakakis; Julian Togelius
This paper introduces a search-based approach to personalized content generation with respect to visual aesthetics. The approach is based on a two-step adaptation procedure where: 1) the evaluation function that characterizes the content is adjusted to match the visual aesthetics of users; and 2) the content itself is optimized based on the personalized evaluation function. To test the efficacy of the approach, we design fitness functions based on universal properties of visual perception, inspired by psychological and neurobiological research. Using these visual properties, we generate aesthetically pleasing 2-D game spaceships via neuroevolutionary constrained optimization and evaluate the impact of the designed visual properties on the generated spaceships. The offline generated spaceships are used as the initial population of an interactive evolution experiment in which players are asked to choose spaceships according to their visual taste: the impact of the various visual properties is adjusted based on player preferences and new content is generated online based on the updated computational model of visual aesthetics of the player. Results are presented that show the potential of the approach in generating content which is based on subjective criteria of visual aesthetics.
genetic and evolutionary computation conference | 2013
Antonios Liapis; Georgios N. Yannakakis; Julian Togelius
Novelty search is a recent algorithm geared to explore search spaces without regard to objectives; minimal criteria novelty search is a variant of this algorithm for constrained search spaces. For large search spaces with multiple constraints, however, it is hard to find a set of feasible individuals that is both large and diverse. In this paper, we present two new methods of novelty search for constrained spaces, Feasible-Infeasible Novelty Search and Feasible-Infeasible Dual Novelty Search. Both algorithms keep separate populations of feasible and infeasible individuals, inspired by the FI-2pop genetic algorithm. These algorithms are applied to the problem of creating diverse and feasible game levels, representative of a large class of important problems in procedural content generation for games. Results show that the new algorithms under certain conditions can produce larger and more diverse sets of feasible strategy game maps than existing algorithms. However, the best algorithm is contingent on the particularities of the search space and the genetic operators used. It is also shown that the proposed enhancement of offspring boosting increases performance in all cases.
computational intelligence and games | 2011
Antonios Liapis; Georgios N. Yannakakis; Julian Togelius
This paper presents a constraint-based procedural content generation (PCG) framework used for the creation of novel and high-performing content. Specifically, we examine the efficiency of the framework for the creation of spaceship design (hull shape and spaceship attributes such as weapon and thruster types and topologies) independently of game physics and steering strategies. According to the proposed framework, the designer picks a set of requirements for the spaceship that a constrained optimizer attempts to satisfy. The constraint satisfaction approach followed is based on neuroevolution; Compositional Pattern-Producing Networks (CPPNs) which represent the spaceships design are trained via a constraint-based evolutionary algorithm. Results obtained in a number of evolutionary runs using a set of constraints and objectives show that the generated spaceships perform well in movement, combat and survival tasks and are also visually appealing.
Evolutionary Computation | 2015
Antonios Liapis; Georgios N. Yannakakis; Julian Togelius
Novelty search is a recent algorithm geared toward exploring search spaces without regard to objectives. When the presence of constraints divides a search space into feasible space and infeasible space, interesting implications arise regarding how novelty search explores such spaces. This paper elaborates on the problem of constrained novelty search and proposes two novelty search algorithms which search within both the feasible and the infeasible space. Inspired by the FI-2pop genetic algorithm, both algorithms maintain and evolve two separate populations, one with feasible and one with infeasible individuals, while each population can use its own selection method. The proposed algorithms are applied to the problem of generating diverse but playable game levels, which is representative of the larger problem of procedural game content generation. Results show that the two-population constrained novelty search methods can create, under certain conditions, larger and more diverse sets of feasible game levels than current methods of novelty search, whether constrained or unconstrained. However, the best algorithm is contingent on the particularities of the search space and the genetic operators used. Additionally, the proposed enhancement of offspring boosting is shown to enhance performance in all cases of two-population novelty search.
computational intelligence and games | 2014
Mike Preuss; Antonios Liapis; Julian Togelius
In procedural content generation, one is often interested in generating a large number of artifacts that are not only of high quality but also diverse, in terms of gameplay, visual impression or some other criterion. We investigate several search-based approaches to creating good and diverse game content, in particular approaches based on evolution strategies with or without diversity preservation mechanisms, novelty search and random search. The content domain is game levels, more precisely map sketches for strategy games, which are meant to be used as suggestions in the Sentient Sketchbook design tool. Several diversity metrics are possible for this type of content: we investigate tile-based, objective-based and visual impression distance. We find that evolution with diversity preservation mechanisms can produce both good and diverse content, but only when using appropriate distance measures. Reversely, we can draw conclusions about the suitability of these distance measures for the domain from the comparison of diversity preserving versus blind restart evolutionary algorithms.
european conference on applications of evolutionary computation | 2013
Antonios Liapis; Georgios N. Yannakakis; Julian Togelius
How can a human and an algorithm productively collaborate on generating game content? In this paper, we try to answer this question in the context of generating balanced and interesting low-resolution sketches for game levels. We introduce six important criteria for successful strategy game maps, and present map sketches optimized for one or more of these criteria via a constrained evolutionary algorithm. The sketch-based map representation and the computationally lightweight evaluation methods are geared towards the integration of the evolutionary algorithm within a mixed-initiative tool, allowing for the co-creation of game content by a human and an artificial designer.
Computational Synthesis and Creative Systems | 2016
Noor Shaker; Antonios Liapis; Julian Togelius; Ricardo Lopes; Rafael Bidarra
This chapter addresses a specific type of game content, the dungeon, and a number of commonly used methods for generating such content. These methods are all “constructive”, meaning that they run in fixed (usually short) time, and do not evaluate their output in order to re-generate it. Most of these methods are also relatively simple to implement. And while dungeons, or dungeon-like environments, occur in a very large number of games, these methods can often be made to work for other types of content as well. We finish the chapter by talking about some constructive generation methods for Super Mario Bros. levels.
european conference on applications of evolutionary computation | 2015
Antonios Liapis; Christoffer Holmgård; Georgios N. Yannakakis; Julian Togelius
This paper introduces a constrained optimization method which uses procedural personas to evaluate the playability and quality of evolved dungeon levels. Procedural personas represent archetypical player behaviors, and their controllers have been evolved to maximize a specific utility which drives their decisions. A “baseline” persona evaluates whether a level is playable by testing if it can survive in a worst-case scenario of the playthrough. On the other hand, a Monster Killer persona or a Treasure Collector persona evaluates playable levels based on how many monsters it can kill or how many treasures it can collect, respectively. Results show that the implemented two-population genetic algorithm discovers playable levels quickly and reliably, while the different personas affect the layout, difficulty level and tactical depth of the generated dungeons.
computational intelligence and games | 2013
Antonios Liapis; Héctor Perez Martínez; Julian Togelius; Georgios N. Yannakakis
This paper introduces Rank-based Interactive Evolution (RIE) which is an alternative to interactive evolution driven by computational models of user preferences to generate personalized content. In RIE, the computational models are adapted to the preferences of users which, in turn, are used as fitness functions for the optimization of the generated content. The preference models are built via ranking-based preference learning, while the content is generated via evolutionary search. The proposed method is evaluated on the creation of strategy game maps, and its performance is tested using artificial agents. Results suggest that RIE is both faster and more robust than standard interactive evolution and outperforms other state-of-the-art interactive evolution approaches.
International Conference on Evolutionary and Biologically Inspired Music and Art | 2015
Amy K. Hoover; William Cachia; Antonios Liapis; Georgios N. Yannakakis
Computer games are unique creativity domains in that they elegantly fuse several facets of creative work including visuals, narrative, music, architecture and design. While the exploration of possibilities across facets of creativity offers a more realistic approach to the game design process, most existing autonomous (or semi-autonomous) game content generators focus on the mere generation of single domains (creativity facets) in games. Motivated by the sparse literature on multifaceted game content generation, this paper introduces a multifaceted procedural content generation (PCG) approach that is based on the interactive evolution of multiple artificial neural networks that orchestrate the generation of visuals, audio and gameplay. The approach is evaluated on a spaceship shooter game. The generated artifacts — a fusion of audiovisual and gameplay elements — showcase the capacity of multifaceted PCG and its evident potential for computational game creativity.