Antonios Matsakas
Hull York Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonios Matsakas.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Helge Amthor; Anthony Otto; Adeline Vulin; Anne Rochat; Julie Dumonceaux; Luis F. García; Etienne Mouisel; Christophe Hourdé; Raymond Macharia; Melanie Friedrichs; Frédéric Relaix; Peter S. Zammit; Antonios Matsakas; Ketan Patel; Terence A. Partridge
Myostatin, a member of the TGF-β family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.
Neuromuscular Disorders | 2009
Antonios Matsakas; Keith Foster; Anthony Otto; Raymond Macharia; Mohamed I. Elashry; Simon Feist; Ian R. Graham; Helen Foster; Paul Yaworsky; Frank S. Walsh; George Dickson; Ketan Patel
Inhibition of myostatin signalling or its biological activity has recently emerged as a potential remedial approach against muscle wasting and degenerative diseases such as muscular dystrophies. In the present study we systemically administered a recombinant AAV8 vector expressing a mutated myostatin propeptide (AAV8ProMyo) to healthy mice in order to assess its impact on the histological, cellular and physiological properties of the skeletal muscle, exploiting the fact that myostatin is naturally inhibited by its own propeptide. We report that a single intravenous administration of AAV8ProMyo leads to increases in muscle mass of tibialis anterior, extensor digitorum longus and gastrocnemius muscles 8 weeks post-injection and tibialis anterior, gastrocnemius and rectus femoris muscles 17 weeks post-injection. Moreover, treatment resulted in muscle fibre hypertrophy but not hyperplasia, with IIB myofibres responding to the greatest extent following propeptide-induced myostatin inhibition. Additionally, myofibre nuclear:cytoplasmic ratio was decreased in the AAV8ProMyo treated animals. Importantly, the hypertrophic EDL muscle 8 weeks after AAV8ProMyo treatment did not show the dramatic decrease in specific force displayed by the germline myostatin null mice.
Journal of Muscle Research and Cell Motility | 2010
Antonios Matsakas; Etienne Mouisel; Helge Amthor; Ketan Patel
Myostatin-deficient mice (MSTN−/−) display excessive muscle mass and this is associated with a profound loss of oxidative metabolic properties. In this study we analysed the effect of two endurance-based exercise regimes, either a forced high-impact swim training or moderate intensity voluntary wheel running on the adaptive properties of the tibialis anterior and plantaris muscle from MSTN−/− mice. MSTN−/− and wild type (MSTN+/+) animals had comparable performances in the wheel running regime in terms of distance, average speed and time, but MSTN−/− mice showed a reduced ability to sustain a high-impact activity via swimming. Swim training elicited muscle specific adaptations on fibre type distribution in MSTN−/−; the tibialis anterior displaying a partial transformation in contrast to the plantaris which showed no change. Conversely, wheel running induced similar changes in fibre type composition of both muscles, favouring transitions from IIB-to-IIA. Succinate dehydrogenase activity, an indicator of mitochondrial oxidative potential was increased in response to either exercise regime, with wheel running eliciting more robust changes in the MSTN−/− muscles. Examination of the cross sectional area of individual fibre types showed genotype-specific responses with MSTN−/− mice exhibiting an incapability of fibre enlargement following the wheel running regime, as opposed to MSTN+/+ mice and a greater susceptibility to muscle fibre area loss following swimming. In conclusion, the muscle fibre hypertrophy, oxidative capacity and glycolytic phenotype of myostatin deficient muscle can be altered with endurance exercise regimes.
Rejuvenation Research | 2010
Antonios Matsakas; Anthony Otto; Mohamed I. Elashry; Susan C. Brown; Ketan Patel
Skeletal muscle fiber generation occurs principally in two myogenic phases: (1) Primary (embryonic) myogenesis when myoblasts proliferate and fuse to form primary myotubes and (2) secondary (fetal) myogenesis when successive waves of myoblasts fuse along the surface of the primary myotubes, giving rise to a population of smaller and more numerous secondary myotubes. This sequence of events determines fiber number and is completed at or soon after birth in most muscles of the mouse. The adult myostatin null mouse (MSTN(-/-)) displays both an increase in fiber number and size relative to wild type (MSTN(+/+)), suggesting a developmental origin for the hypermuscular phenotype. The focus of the present study was to determine at which point during myogenesis do MSTN(-/-) animals diverge from MSTN(+/+). To achieve this, we focused on the extensor digitorum longus (EDL) muscle and evaluated primary myotube number at embryonic day (E) 13.0 and E14.5 and secondary to primary myotube ratios at E18.5. We show that primary myotube number and size were significantly increased in the MSTN(-/-) mice by E14.5 and the secondary to primary myotube ratio increased at E18.5. This increase in the rate of fiber formation resulted in MSTN(-/-) mice harboring 87% of their final adult fiber number at E18.5, compared to only 73% in MSTN(+/+). An accelerated myogenic program in the MSTN(-/-) mice was further confirmed by our finding of an initial expansion in the myogenic stem cell (identified through Pax7 expression) and myoblast (identified through myogenin expression) cell pools at E14.5 in the EDL muscle of these animals that was, however, followed by a reduction of both populations of cells at E18.5 relative to MSTN(+/+). Overall these data suggest that the genetic loss of myostatin accelerates the developmental myogenic program of primary and secondary skeletal myogenesis.
Rejuvenation Research | 2009
Mohamed I. Elashry; Anthony Otto; Antonios Matsakas; Salah E. El-Morsy; Ketan Patel
Most current research into therapeutic approaches to muscle diseases involves the use of the mouse as an experimental model. Furthermore, a major strategy to alleviate myopathic symptoms through enhancing muscle growth and regeneration is to inhibit the action of myostatin (Mstn), a transforming growth factor-beta (TGF-beta) family member that inhibits muscle growth. Presently, however, no study has expanded the morphological analysis of mouse skeletal muscle beyond a few individual muscles of the distal hindlimb, through which broad conclusions have been based. Therefore, we have initially undertaken an expansive analysis of the skeletal musculature of the mouse forelimb and highlighted the species-specific differences between equivalent muscles of the rat, another prominently used experimental model. Subsequently, we examined the musculature of the forelimb in both young and old adult wild-type (mstn(+/+)) and myostatin null (mstn(-/-)) mice and assessed the potential beneficial and detrimental effects of myostatin deletion on muscle morphology and composition during the aging process. We showed that: (1) the forelimb muscles of the mouse display a more glycolytic phenotype than those of the rat; (2) in the absence of myostatin, the induced myofiber hyperplasia, hypertrophy, and glycolytic conversion all occur in a muscle-specific manner; and, importantly, (3) the loss of myostatin significantly alters the dynamics of postnatal muscle growth and impairs age-related oxidative myofiber conversion.
eLife | 2016
Saleh Omairi; Antonios Matsakas; Hans Degens; Oliver Kretz; Kenth-Arne Hansson; Andreas Våvang Solbrå; Jo C. Bruusgaard; Barbara Joch; Roberta Sartori; Natasa Giallourou; Robert Mitchell; Henry Collins-Hooper; Keith Foster; Arja Pasternack; Olli Ritvos; Marco Sandri; Vihang A. Narkar; Jonathan R. Swann; Tobias B. Huber; Ketan Patel
A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn-/-/ErrγTg/+) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn-/-/ErrγTg/+ mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced. DOI: http://dx.doi.org/10.7554/eLife.16940.001
International Journal of Sports Medicine | 2012
Antonios Matsakas; Romanello; Roberta Sartori; E Masiero; Raymond Macharia; Anthony Otto; Mohamed I. Elashry; Marco Sandri; Ketan Patel
Food restriction has a great impact on skeletal muscle mass by inducing muscle protein breakdown to provide substrates for energy production through gluconeogenesis. Genetic models of hyper-muscularity interfere with the normal balance between protein synthesis and breakdown which eventually results in extreme muscle growth. Mutations or deletions in the myostatin gene result in extreme muscle mass. Here we evaluated the impact of food restriction for a period of 5 weeks on skeletal muscle size (i. e., fibre cross-sectional area), fibre type composition and contractile properties (i. e., tetanic and specific force) in myostatin null mice. We found that this hyper-muscular model was more susceptible to catabolic processes than wild type mice. The mechanism of skeletal muscle mass loss was examined and our data shows that the myostatin null mice placed on a low calorie diet maintained the activity of molecules involved in protein synthesis and did not up-regulate the expression of genes pivotal in ubiquitin-mediated protein degradation. However, we did find an increase in the expression of genes associated with autophagy. Surprisingly, the reduction on muscle size was followed by improved tetanic and specific force in the null mice compared to wild type mice. These data provide evidence that food restriction may revert the hyper-muscular phenotype of the myostatin null mouse restoring muscle function.
Developmental Biology | 2010
Anthony Otto; Raymond Macharia; Antonios Matsakas; Baljinder S. Mankoo; Ketan Patel
The major component of skeletal muscle is the myofibre. Genetic intervention inducing over-enlargement of myofibres beyond a certain threshold through acellular growth causes a reduction in the specific tension generating capacity of the muscle. However the physiological parameters of a genetic model that harbours reduced skeletal muscle mass have yet to be analysed. Genetic deletion of Meox2 in mice leads to reduced limb muscle size and causes some patterning defects. The loss of Meox2 is not embryonically lethal and a small percentage of animals survive to adulthood making it an excellent model with which to investigate how skeletal muscle responds to reductions in mass. In this study we have performed a detailed analysis of both late foetal and adult muscle development in the absence of Meox2. In the adult, we show that the loss of Meox2 results in smaller limb muscles that harbour reduced numbers of myofibres. However, these fibres are enlarged. These myofibres display a molecular and metabolic fibre type switch towards a more oxidative phenotype that is induced through abnormalities in foetal fibre formation. In spite of these changes, the muscle from Meox2 mutant mice is able to generate increased levels of specific tension compared to that of the wild type.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2014
Henry Collins-Hooper; Roberta Sartori; Raymond Macharia; Korntip Visanuvimol; Keith Foster; Antonios Matsakas; Hannah Flasskamp; Steve Ray; Philip R. Dash; Marco Sandri; Ketan Patel
Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide. We show that a single injection of an AAV8 virus expressing the myostatin propeptide induced an increase in whole body weights and all muscles examined within 7 weeks of treatment. Our cellular studies demonstrate that muscle enlargement was due to selective fiber type hypertrophy, which was accompanied by a shift toward a glycolytic phenotype. Our molecular investigations elucidate the mechanism underpinning muscle hypertrophy by showing a decrease in the expression of key genes that control ubiquitin-mediated protein breakdown. Most importantly, we show that the hypertrophic muscle that develops as a consequence of myostatin propeptide in aged mice has normal contractile properties. We suggest that attenuating myostatin signaling could be a very attractive strategy to halt and possibly reverse age-related muscle loss.
Journal of Anatomy | 2011
Mohamed I. Elashry; Anthony Otto; Antonios Matsakas; Salah E. El-Morsy; Lisa Jones; Bethan Anderson; Ketan Patel
Germline deletion of the myostatin gene results in hyperplasia and hypertrophy of the tension‐generating (extrafusal) fibres in skeletal muscle. As this gene is expressed predominantly in myogenic tissues it offers an excellent model with which to investigate the quantitative relationship between muscle and axonal development. Here we show that skeletal muscle hyperplasia in myostatin null mouse is accompanied by an increase in nerve fibres in major nerves of both the fore‐ and hindlimbs. We show that axons within these nerves undergo hypertrophy. Furthermore, we provide evidence that the age‐related neural atrophic process is delayed in the absence of myostatin. Finally, we show that skeletal muscle hyperplasia in the myostatin null mouse is accompanied by an increase in the number of muscle spindles (also called stretch receptors or proprioceptors). However, our work demonstrates that the mechanisms regulating intrafusal fibre hyperplasia and hypertrophy differ from those that control the aetiology of extrafusal fibres.