Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antonius J. A. van Maris is active.

Publication


Featured researches published by Antonius J. A. van Maris.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2006

Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status

Antonius J. A. van Maris; Derek A. Abbott; Eleonora Bellissimi; Joost van den Brink; Marko Kuyper; Marijke A. H. Luttik; H. Wouter Wisselink; W. Alexander Scheffers; Johannes P. van Dijken; Jack T. Pronk

Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden–Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient␣anaerobic fermentation of this pentose. l-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under ‘academic’ conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.


Applied and Environmental Microbiology | 2008

Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export

Rintze M. Zelle; Erik de Hulster; Wouter A. van Winden; Pieter de Waard; Cor Dijkema; Aaron Adriaan Winkler; Jan-Maarten A. Geertman; Johannes P. van Dijken; Jack T. Pronk; Antonius J. A. van Maris

ABSTRACT Malic acid is a potential biomass-derivable “building block” for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO2-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)−1. A previously engineered glucose-tolerant, C2-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter−1 at a malate yield of 0.42 mol (mol glucose)−1. Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on 13C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.


Advances in Biochemical Engineering \/ Biotechnology | 2007

Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae: Xylose Isomerase as a Key Component

Antonius J. A. van Maris; Aaron Adriaan Winkler; Marko Kuyper; Wim T. A. M. de Laat; Johannes P. van Dijken; Jack T. Pronk

Metabolic engineering of Saccharomyces cerevisiae for ethanol production from D-xylose, an abundant sugar in plant biomass hydrolysates, has been pursued vigorously for the past 15 years. Whereas wild-type S. cerevisiae cannot ferment D-xylose, the keto-isomer D-xylulose can be metabolised slowly. Conversion of D-xylose into D-xylulose is therefore crucial in metabolic engineering of xylose fermentation by S. cerevisiae. Expression of heterologous xylose reductase and xylitol dehydrogenase does enable D-xylose utilisation, but intrinsic redox constraints of this pathway result in undesirable byproduct formation in the absence of oxygen. In contrast, expression of xylose isomerase (XI, EC 5.3.1.5), which directly interconverts D-xylose and D-xylulose, does not have these constraints. However, several problems with the functional expression of various bacterial and Archaeal XI genes have precluded successful use of XI in yeast metabolic engineering. This changed with the discovery of a fungal XI gene in Piromyces sp. E2, expression of which led to high XI activities in S. cerevisiae. When combined with over-expression of the genes of the non-oxidative pentose phosphate pathway of S. cerevisiae, the resulting strain grew anaerobically on D-xylose with a doubling time of ca. 8 h, with the same ethanol yield as on glucose. Additional evolutionary engineering was used to improve the fermentation kinetics of mixed-substrate utilisation, resulting in efficient D-xylose utilisation in synthetic media. Although industrial pilot experiments have already demonstrated high ethanol yields from the D-xylose present in plant biomass hydrolysates, strain robustness, especially with respect to tolerance to inhibitors present in hydrolysates, can still be further improved.


Applied and Environmental Microbiology | 2009

Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains

H. Wouter Wisselink; Maurice J. Toirkens; Qixiang Wu; Jack T. Pronk; Antonius J. A. van Maris

ABSTRACT Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars would greatly contribute to the efficiency of production processes. One of the main challenges emerging from the use of lignocellulosics for the production of ethanol by the yeast Saccharomyces cerevisiae is efficient fermentation of d-xylose and l-arabinose, as these sugars cannot be used by natural S. cerevisiae strains. In this study, we describe the first engineered S. cerevisiae strain (strain IMS0003) capable of fermenting mixtures of glucose, xylose, and arabinose with a high ethanol yield (0.43 g g−1 of total sugar) without formation of the side products xylitol and arabinitol. The kinetics of anaerobic fermentation of glucose-xylose-arabinose mixtures were greatly improved by using a novel evolutionary engineering strategy. This strategy included a regimen consisting of repeated batch cultivation with repeated cycles of consecutive growth in three media with different compositions (glucose, xylose, and arabinose; xylose and arabinose; and only arabinose) and allowed rapid selection of an evolved strain (IMS0010) exhibiting improved specific rates of consumption of xylose and arabinose. This evolution strategy resulted in a 40% reduction in the time required to completely ferment a mixture containing 30 g liter−1 glucose, 15 g liter−1 xylose, and 15 g liter−1 arabinose.


Applied and Environmental Microbiology | 2004

Directed Evolution of Pyruvate Decarboxylase-Negative Saccharomyces cerevisiae, Yielding a C2-Independent, Glucose-Tolerant, and Pyruvate-Hyperproducing Yeast

Antonius J. A. van Maris; Jan Maarten A Geertman; Alexander Vermeulen; Matthijs K. Groothuizen; Aaron Adriaan Winkler; Matthew D.W. Piper; Johannes P. van Dijken; Jack T. Pronk

ABSTRACT The absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc−) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc−S. cerevisiae strains have two growth defects: (i) growth on synthetic medium in glucose-limited chemostat cultures requires the addition of small amounts of ethanol or acetate and (ii) even in the presence of a C2 compound, these strains cannot grow in batch cultures on synthetic medium with glucose. We used two subsequent phenotypic selection strategies to obtain a Pdc− strain without these growth defects. An acetate-independent Pdc− mutant was obtained via (otherwise) glucose-limited chemostat cultivation by progressively lowering the acetate content in the feed. Transcriptome analysis did not reveal the mechanisms behind the C2 independence. Further selection for glucose tolerance in shake flasks resulted in a Pdc−S. cerevisiae mutant (TAM) that could grow in batch cultures (μmax = 0.20 h−1) on synthetic medium, with glucose as the sole carbon source. Although the exact molecular mechanisms underlying the glucose-tolerant phenotype were not resolved, transcriptome analysis of the TAM strain revealed increased transcript levels of many glucose-repressible genes relative to the isogenic wild type in nitrogen-limited chemostat cultures with excess glucose. In pH-controlled aerobic batch cultures, the TAM strain produced large amounts of pyruvate. By repeated glucose feeding, a pyruvate concentration of 135 g liter−1 was obtained, with a specific pyruvate production rate of 6 to 7 mmol g of biomass−1 h−1 during the exponential-growth phase and an overall yield of 0.54 g of pyruvate g of glucose−1.


Fems Yeast Research | 2015

CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.

Robert Mans; Harmen M. van Rossum; Melanie Wijsman; Antoon Backx; Niels G. A. Kuijpers; Marcel van den Broek; Pascale Daran-Lapujade; Jack T. Pronk; Antonius J. A. van Maris; Jean-Marc Daran

A variety of techniques for strain engineering in Saccharomyces cerevisiae have recently been developed. However, especially when multiple genetic manipulations are required, strain construction is still a time-consuming process. This study describes new CRISPR/Cas9-based approaches for easy, fast strain construction in yeast and explores their potential for simultaneous introduction of multiple genetic modifications. An open-source tool (http://yeastriction.tnw.tudelft.nl) is presented for identification of suitable Cas9 target sites in S. cerevisiae strains. A transformation strategy, using in vivo assembly of a guideRNA plasmid and subsequent genetic modification, was successfully implemented with high accuracies. An alternative strategy, using in vitro assembled plasmids containing two gRNAs, was used to simultaneously introduce up to six genetic modifications in a single transformation step with high efficiencies. Where previous studies mainly focused on the use of CRISPR/Cas9 for gene inactivation, we demonstrate the versatility of CRISPR/Cas9-based engineering of yeast by achieving simultaneous integration of a multigene construct combined with gene deletion and the simultaneous introduction of two single-nucleotide mutations at different loci. Sets of standardized plasmids, as well as the web-based Yeastriction target-sequence identifier and primer-design tool, are made available to the yeast research community to facilitate fast, standardized and efficient application of the CRISPR/Cas9 system.


Fems Yeast Research | 2009

Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges

Derek A. Abbott; Rintze M. Zelle; Jack T. Pronk; Antonius J. A. van Maris

To meet the demands of future generations for chemicals and energy and to reduce the environmental footprint of the chemical industry, alternatives for petrochemistry are required. Microbial conversion of renewable feedstocks has a huge potential for cleaner, sustainable industrial production of fuels and chemicals. Microbial production of organic acids is a promising approach for production of chemical building blocks that can replace their petrochemically derived equivalents. Although Saccharomyces cerevisiae does not naturally produce organic acids in large quantities, its robustness, pH tolerance, simple nutrient requirements and long history as an industrial workhorse make it an excellent candidate biocatalyst for such processes. Genetic engineering, along with evolution and selection, has been successfully used to divert carbon from ethanol, the natural endproduct of S. cerevisiae, to pyruvate. Further engineering, which included expression of heterologous enzymes and transporters, yielded strains capable of producing lactate and malate from pyruvate. Besides these metabolic engineering strategies, this review discusses the impact of transport and energetics as well as the tolerance towards these organic acids. In addition to recent progress in engineering S. cerevisiae for organic acid production, the key limitations and challenges are discussed in the context of sustainable industrial production of organic acids from renewable feedstocks.


Applied and Environmental Microbiology | 2004

Homofermentative Lactate Production Cannot Sustain Anaerobic Growth of Engineered Saccharomyces cerevisiae: Possible Consequence of Energy-Dependent Lactate Export

Antonius J. A. van Maris; Aaron Adriaan Winkler; Danilo Porro; Johannes P. van Dijken; Jack T. Pronk

ABSTRACT Due to a growing market for the biodegradable and renewable polymer polylactic acid, the world demand for lactic acid is rapidly increasing. The tolerance of yeasts to low pH can benefit the process economy of lactic acid production by minimizing the need for neutralizing agents. Saccharomyces cerevisiae (CEN.PK background) was engineered to a homofermentative lactate-producing yeast via deletion of the three genes encoding pyruvate decarboxylase and the introduction of a heterologous lactate dehydrogenase (EC 1.1.1.27). Like all pyruvate decarboxylase-negative S. cerevisiae strains, the engineered strain required small amounts of acetate for the synthesis of cytosolic acetyl-coenzyme A. Exposure of aerobic glucose-limited chemostat cultures to excess glucose resulted in the immediate appearance of lactate as the major fermentation product. Ethanol formation was absent. However, the engineered strain could not grow anaerobically, and lactate production was strongly stimulated by oxygen. In addition, under all conditions examined, lactate production by the engineered strain was slower than alcoholic fermentation by the wild type. Despite the equivalence of alcoholic fermentation and lactate fermentation with respect to redox balance and ATP generation, studies on oxygen-limited chemostat cultures showed that lactate production does not contribute to the ATP economy of the engineered yeast. This absence of net ATP production is probably due to a metabolic energy requirement (directly or indirectly in the form of ATP) for lactate export.


Fems Yeast Research | 2009

Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

Eleonora Bellissimi; Johannes P. van Dijken; Jack T. Pronk; Antonius J. A. van Maris

Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (<0.10 g L(-1)) in all cultures. Xylose fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.


Applied and Environmental Microbiology | 2009

Quantitative Physiology of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates

Léonie G.M. Boender; Erik de Hulster; Antonius J. A. van Maris; Pascale Daran-Lapujade; Jack T. Pronk

ABSTRACT Growth at near-zero specific growth rates is a largely unexplored area of yeast physiology. To investigate the physiology of Saccharomyces cerevisiae under these conditions, the effluent removal pipe of anaerobic, glucose-limited chemostat culture (dilution rate, 0.025 h−1) was fitted with a 0.22-μm-pore-size polypropylene filter unit. This setup enabled prolonged cultivation with complete cell retention. After 22 days of cultivation, specific growth rates had decreased below 0.001 h−1 (doubling time of >700 h). Over this period, viability of the retentostat cultures decreased to ca. 80%. The viable biomass concentration in the retentostats could be accurately predicted by a maintenance coefficient of 0.50 mmol of glucose g−1 of biomass h−1 calculated from anaerobic, glucose-limited chemostat cultures grown at dilution rates of 0.025 to 0.20 h−1. This indicated that, in contrast to the situation in several prokaryotes, maintenance energy requirements in S. cerevisiae do not substantially change at near-zero specific growth rates. After 22 days of retentostat cultivation, glucose metabolism was predominantly geared toward alcoholic fermentation to meet maintenance energy requirements. The strict correlation between glycerol production and biomass formation observed at higher specific growth rates was not maintained at the near-zero growth rates reached in the retentostat cultures. In addition to glycerol, the organic acids acetate, d-lactate, and succinate were produced at low rates during prolonged retentostat cultivation. This study identifies robustness and by-product formation as key issues in attempts to uncouple growth and product formation in S. cerevisiae.

Collaboration


Dive into the Antonius J. A. van Maris's collaboration.

Top Co-Authors

Avatar

Jack T. Pronk

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Daran

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Erik de Hulster

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes P. van Dijken

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcel van den Broek

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Maarten D. Verhoeven

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marijke A. H. Luttik

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pascale Daran-Lapujade

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Mans

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Derek A. Abbott

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge