Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antony Godwin is active.

Publication


Featured researches published by Antony Godwin.


Nature Biotechnology | 2004

Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation

Sunil Shaunak; Sharyn Thomas; Elisabetta Gianasi; Antony Godwin; Emma Jones; Ian Teo; Kamiar Mireskandari; Philip Luthert; Ruth Duncan; Steve Patterson; Peng Khaw; Steve Brocchini

Dendrimers are hyperbranched macromolecules that can be chemically synthesized to have precise structural characteristics. We used anionic, polyamidoamine, generation 3.5 dendrimers to make novel water-soluble conjugates of D(+)-glucosamine and D(+)-glucosamine 6-sulfate with immuno-modulatory and antiangiogenic properties respectively. Dendrimer glucosamine inhibited Toll-like receptor 4–mediated lipopolysaccharide induced synthesis of pro-inflammatory chemokines (MIP-1α, MIP-1β, IL-8) and cytokines (TNF-α, IL-1β, IL-6) from human dendritic cells and macrophages but allowed upregulation of the costimulatory molecules CD25, CD80, CD83 and CD86. Dendrimer glucosamine 6-sulfate blocked fibroblast growth factor-2 mediated endothelial cell proliferation and neoangiogenesis in human Matrigel and placental angiogenesis assays. When dendrimer glucosamine and dendrimer glucosamine 6-sulfate were used together in a validated and clinically relevant rabbit model of scar tissue formation after glaucoma filtration surgery, they increased the long-term success of the surgery from 30% to 80% (P = 0.029). We conclude that synthetically engineered macromolecules such as the dendrimers described here can be tailored to have defined immuno-modulatory and antiangiogenic properties, and they can be used synergistically to prevent scar tissue formation.


Angewandte Chemie | 2001

Narrow Molecular Weight Distribution Precursors for Polymer–Drug Conjugates

Antony Godwin; Markus Hartenstein; Axel H. E. Müller; Stephen Brocchini

Atom transfer polymerization has been used to prepare a narrow molecular weight distribution (MWD), active ester homopolymer that acted as a precursor to prepare families of narrow MWD polymer-drug conjugates during preclinical studies.


Bioconjugate Chemistry | 2008

Poly(2-methacryloyloxyethyl phosphorylcholine) for Protein Conjugation

Andrew Lewis; Yiqing Tang; Steve Brocchini; Ji-Won Choi; Antony Godwin

The water-soluble, biocompatible polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) was evaluated for protein conjugation. PMPC is a zwitterionic polymer that is able to form a more compact conformation in aqueous solution than poly(ethylene glycol) (PEG). While a terminally functionalized N-hydroxysuccinimide derivative of PMPC was not efficient for conjugation to an amine moiety on interferon-alpha2a (IFN), we found that a bis-thiol specific derivative of PMPC could be conjugated after reduction of the disulfide bonds in IFN. Utilizing PMPC that displayed a similar hydrodynamic volume to 20 kDa PEG, we evaluated the in vitro antiviral and antiproliferative activity and pharmacokinetics of a PMPC-IFN conjugate. As a hygroscopic zwitterionic polymer, PMPC is able to form a compact conformation in aqueous solution, which was found to be more compact than PEG. This suggests that PMPC protein conjugates may display different plasma elimination characteristics than PEG protein conjugates. PMPC-IFN displayed marked resistance to antibody binding in Western blot analysis with a polyclonal anti-IFN antibody while displaying comparable in vitro antiviral and antiproliferative activity to PEG-IFN. During an in vivo pharmacokinetic study, the absorption t(1/2) for PMPC-IFN was considerably extended compared to the native IFN and 20 kDa PEG analogue. This is also consistent with the SDS-PAGE result where an apparent reduction in mobility through a hydrated medium was observed. The elimination t(1/2) was also vastly extended over the native IFN and twice the value of 20 kDa PEG-IFN. This suggests that tissue migration of PMPC-IFN occurs more slowly than the 20 kDa PEG-IFN despite their similarity in hydrodynamic volume, leading to an an improved depot effect, which could explain the longer elimination t(1/2). In this study, we demonstrate a potential use of PMPCylation as a novel tool for enhancing the pharmacokinetic profile of therapeutic proteins in ways that complement PEGylation.


Bioconjugate Chemistry | 2014

Bridging Disulfides for Stable and Defined Antibody Drug Conjugates

George Badescu; Penny Bryant; Matthew Bird; Korinna Henseleit; Julia Swierkosz; Vimal Parekh; Rita Tommasi; Estera Pawlisz; Kosma Jurlewicz; Monika Farys; Nicolas Camper; XiaoBo Sheng; Martin Fisher; Ruslan Grygorash; Andrew Kyle; Amrita Abhilash; Mark Frigerio; Jeff Edwards; Antony Godwin

To improve both the homogeneity and the stability of ADCs, we have developed site-specific drug-conjugating reagents that covalently rebridge reduced disulfide bonds. The new reagents comprise a drug, a linker, and a bis-reactive conjugating moiety that is capable of undergoing reaction with both sulfur atoms derived from a reduced disulfide bond in antibodies and antibody fragments. A disulfide rebridging reagent comprising monomethyl auristatin E (MMAE) was prepared and conjugated to trastuzumab (TRA). A 78% conversion of antibody to ADC with a drug to antibody ratio (DAR) of 4 was achieved with no unconjugated antibody remaining. The MMAE rebridging reagent was also conjugated to the interchain disulfide of a Fab derived from proteolytic digestion of TRA, to give a homogeneous single drug conjugated product. The resulting conjugates retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Disulfide rebridging conjugation is a general approach to prepare stable ADCs, which does not require the antibody to be recombinantly re-engineered for site-specific conjugation.


Nature Protocols | 2006

PEGylation of native disulfide bonds in proteins

Steve Brocchini; Sibu Balan; Antony Godwin; Ji-Won Choi; Mire Zloh; Sunil Shaunak

PEGylation has turned proteins into important new biopharmaceuticals. The fundamental problems with the existing approaches to PEGylation are inefficient conjugation and the formation of heterogeneous mixtures. This is because poly(ethylene glycol) (PEG) is usually conjugated to nucleophilic amine residues. Our PEGylation protocol solves these problems by exploiting the chemical reactivity of both of the sulfur atoms in the disulfide bond of many biologically relevant proteins. An accessible disulfide bond is mildly reduced to liberate the two cysteine sulfur atoms without disturbing the proteins tertiary structure. Site-specific PEGylation is achieved with a bis-thiol alkylating PEG reagent that sequentially undergoes conjugation to form a three-carbon bridge. The two sulfur atoms are re-linked with PEG selectively conjugated to the bridge. PEGylation of a protein can be completed in 24 h and purification of the PEG-protein conjugate in another 3 h. We have successfully applied this approach to PEGylation of cytokines, enzymes, antibody fragments and peptides, without destroying their tertiary structure or abolishing their biological activity.


Molecular Pharmaceutics | 2015

In Vitro and In Vivo Evaluation of Cysteine Rebridged Trastuzumab–MMAE Antibody Drug Conjugates with Defined Drug-to-Antibody Ratios

Penny Bryant; Martin Pabst; George Badescu; Matthew Bird; William McDowell; Estera Jamieson; Julia Swierkosz; Kosma Jurlewicz; Rita Tommasi; Korinna Henseleit; XiaoBo Sheng; Nicolas Camper; Anaïs Manin; Katarzyna Kozakowska; Karolina Peciak; Emmanuelle Laurine; Ruslan Grygorash; Andrew Kyle; David Morris; Vimal Parekh; Amrita Abhilash; Ji-Won Choi; Jeff Edwards; Mark Frigerio; Matthew P. Baker; Antony Godwin

The conjugation of monomethyl auristatin E (MMAE) to trastuzumab using a reduction bis-alkylation approach that is capable of rebridging reduced (native) antibody interchain disulfide bonds has been previously shown to produce a homogeneous and stable conjugate with a drug-to-antibody ratio (DAR) of 4 as the major product. Here, we further investigate the potency of the DAR 4 conjugates prepared by bis-alkylation by comparing to lower drug loaded variants to maleimide linker based conjugates possessing typical mixed DAR profiles. Serum stability, HER2 receptor binding, internalization, in vitro potency, and in vivo efficacy were all evaluated. Greater stability compared with maleimide conjugation was observed with no significant decrease in receptor/FcRn binding. A clear dose-response was obtained based on drug loading (DAR) with the DAR 4 conjugate showing the highest potency in vitro and a much higher efficacy in vivo compared with the lower DAR conjugates. Finally, the DAR 4 conjugate demonstrated superior efficacy compared to trastuzumab-DM1 (T-DM1, Kadcyla), as evaluated in a low HER2 expressing JIMT-1 xenograft model.


Bioconjugate Chemistry | 2012

Site-Specific PEGylation at Histidine Tags

Yuehua Cong; Estera Pawlisz; Penny Bryant; Sibu Balan; Emmanuelle Laurine; Rita Tommasi; Ruchi Singh; Sitara Dubey; Karolina Peciak; Matthew Bird; Amrita Sivasankar; Julia Swierkosz; Maurizio Muroni; Sibylle Heidelberger; Monika Farys; Farzad Khayrzad; Jeff Edwards; George Badescu; Ian Hodgson; Charles Heise; Satyanarayana Somavarapu; John Liddell; Keith Powell; Mire Zloh; Ji-Won Choi; Antony Godwin; Steve Brocchini

The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.


Bioconjugate Chemistry | 2014

A New Reagent for Stable Thiol-Specific Conjugation

George Badescu; Penny Bryant; Julia Swierkosz; Farzad Khayrzad; Estera Pawlisz; Monika Farys; Yuehua Cong; Maurizio Muroni; Norbert Rumpf; Steve Brocchini; Antony Godwin

Many clinically used protein therapeutics are modified to increase their efficacy. Example modifications include the conjugation of cytotoxic drugs to monoclonal antibodies or poly(ethylene glycol) (PEG) to proteins and peptides. Monothiol-specific conjugation can be efficient and is often accomplished using maleimide-based reagents. However, maleimide derived conjugates are known to be susceptible to exchange reactions with endogenous proteins. To address this limitation in stability, we have developed PEG-mono-sulfone 3, which is a latently reactive, monothiol selective conjugation reagent. Comparative reactions with PEG-maleimide and other common thiol-selective PEGylation reagents including vinyl sulfone, acrylate, and halo-acetamides show that PEG-mono-sulfone 3 undergoes more efficient conjugation under mild reaction conditions. Due to the latent reactivity of PEG-mono-sulfone 3, its reactivity can be tailored and, once conjugated, the electron-withdrawing ketone is easily reduced under mild conditions to prevent undesirable deconjugation and exchange reactions from occurring. We describe a comparative stability study demonstrating a PEG-maleimide conjugate to be more labile to deconjugation than the corresponding conjugate obtained using PEG-mono-sulfone 3.


Journal of Pharmacy and Pharmacology | 2001

New strategies for polymer development in pharmaceutical science — a short review

Antony Godwin; K. Bolina; Marie-Claude DuBois Clochard; Elisabeth Dinand; S. Rankin; S. Simic; Steve Brocchini

We are developing synthetic polymers for pharmaceutical and medical applications. These applications can be broadly grouped on how the polymer will be utilized e.g. material, excipient or molecule. Our focus is to develop polymers with more defined structures that are based on biological, physicochemical and/or materials criteria. Strategies are being developed to more efficiently optimize structure—property correlations during preclinical development. We describe two examples of our research on pharmaceutical polymer development: narrow molecular weight distribution (MWD) homopolymeric precursors which can be functionalized to give families of narrow MWD homo‐ and co‐polymers, and hydrolytically degradable polymers.


Bioconjugate Chemistry | 2013

Fab-PEG-Fab as a potential antibody mimetic.

Hanieh Khalili; Antony Godwin; Ji-Won Choi; Rebecca Lever; Peng T. Khaw; Steve Brocchini

IgG antibodies have evolved to be flexible so that they can bind to epitopes located over a wide spatial range. The two Fabs in an IgG antibody are linked together as if each Fab is at the end of a linear, flexible molecule. PEG was used as a scaffold molecule to link two Fabs together to give Fab-PEG-Fab molecules, or FpFs. Preparation of FpFs was achieved with reagents that undergo site-specific conjugation at each PEG terminus by bis-alkylation with the two cysteine thiols from a disulfide bond. This allowed each Fab to be conjugated to the PEG scaffold in essentially the same region that each Fab is linked in an IgG. Fabs were sourced directly (e.g., ranibizumab) or monoclonal IgG antibodies were proteolytically digested to obtain the Fabs. This allowed the resulting FpFs to be directly compared to parent IgGs. PEG scaffolds of 6, 10, and 20 kDa were used to make the corresponding FpFs. Dynamic light scatting data suggested the resulting FpFs were similar in size to an IgG antibody and about half the size of a 20 kDa PEGylated-Fab. The solution size of PEG-conjugated proteins is known to be dominated by the extended solution structure of PEG, so it is thought that the smaller size of the FpFs is due to interactions between the two Fabs. Anti-VEGF and anti-Her2 FpFs were prepared and evaluated. The FpFs displayed similar apparent affinities to their parent IgGs. Slower dissociation rates were observed for the anti-VEGF FpFs compared to bevacizumab. The anti-VEGF FpFs also displayed in vitro anti-angiogenic properties comparable to or better than bevacizumab. These first studies indicate that FpFs warrant further examination in a therapeutic indication where the presence of the Fc may not be required.

Collaboration


Dive into the Antony Godwin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve Brocchini

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Frigerio

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mire Zloh

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Hanieh Khalili

University College London

View shared research outputs
Top Co-Authors

Avatar

Ian Teo

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge