Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antony Kaspi is active.

Publication


Featured researches published by Antony Kaspi.


PLOS Genetics | 2011

Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium

Reo Maruyama; Sibgat Choudhury; Adam Kowalczyk; Marina Bessarabova; Bryan Beresford-Smith; Thomas C. Conway; Antony Kaspi; Zhenhua Wu; Tatiana Nikolskaya; Vanessa F. Merino; Pang Kuo Lo; X. Shirley Liu; Yuri Nikolsky; Saraswati Sukumar; Izhak Haviv; Kornelia Polyak

Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type–specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type–specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.


Cell Stem Cell | 2013

Molecular profiling of human mammary gland links breast cancer risk to a p27(+) cell population with progenitor characteristics.

Sibgat Choudhury; Vanessa Almendro; Vanessa F. Merino; Zhenhua Wu; Reo Maruyama; Ying Su; Filipe C. Martins; Mary Jo Fackler; Marina Bessarabova; Adam Kowalczyk; Thomas C. Conway; Bryan Beresford-Smith; Geoff Macintyre; Yu Kang Cheng; Zoila Lopez-Bujanda; Antony Kaspi; Rong Hu; Judith Robens; Tatiana Nikolskaya; Vilde D. Haakensen; Stuart J. Schnitt; Pedram Argani; Gabrielle Ethington; Laura Panos; Michael P. Grant; Jason Clark; William Herlihy; S. Joyce Lin; Grace L. Chew; Erik W. Thompson

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44(+) progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44(+)p27(+) cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27(+) cells and their proliferation. Our results suggest that pathways controlling p27(+) mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.


Genome Research | 2014

Vascular histone deacetylation by pharmacological HDAC inhibition

Haloom Rafehi; Aneta Balcerczyk; Sebastian Lunke; Antony Kaspi; Mark Ziemann; Harikrishnan Kn; Jun Okabe; Ishant Khurana; Jenny Y.Y. Ooi; Abdul Waheed Khan; Xiao-Jun Du; Lisa Chang; Izhak Haviv; Samuel T. Keating; Tom C. Karagiannis; Assam El-Osta

HDAC inhibitors can regulate gene expression by post-translational modification of histone as well as nonhistone proteins. Often studied at single loci, increased histone acetylation is the paradigmatic mechanism of action. However, little is known of the extent of genome-wide changes in cells stimulated by the hydroxamic acids, TSA and SAHA. In this article, we map vascular chromatin modifications including histone H3 acetylation of lysine 9 and 14 (H3K9/14ac) using chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq). Since acetylation-mediated gene expression is often associated with modification of other lysine residues, we also examined H3K4me3 and H3K9me3 as well as changes in CpG methylation (CpG-seq). RNA sequencing indicates the differential expression of ∼30% of genes, with almost equal numbers being up- and down-regulated. We observed broad deacetylation and gene expression changes conferred by TSA and SAHA mediated by the loss of EP300/CREBBP binding at multiple gene promoters. This study provides an important framework for HDAC inhibitor function in vascular biology and a comprehensive description of genome-wide deacetylation by pharmacological HDAC inhibition.


PLOS ONE | 2014

Rapid Development of Non-Alcoholic Steatohepatitis in Psammomys obesus (Israeli Sand Rat)

Briana Spolding; Timothy Connor; Carrie Wittmer; Lelia L. F. de Abreu; Antony Kaspi; Mark Ziemann; Gunveen Kaur; Adrian Cooper; Shona Morrison; Scott Lee; Andrew J. Sinclair; Yann Gibert; James L. Trevaskis; Jonathon D. Roth; Assam El-Osta; Richard Standish; Ken Walder

Background and Aims A major impediment to establishing new treatments for non-alcoholic steatohepatitis is the lack of suitable animal models that accurately mimic the biochemical and metabolic characteristics of the disease. The aim of this study was to explore a unique polygenic animal model of metabolic disease as a model of non-alcoholic steatohepatitis by determining the effects of 2% dietary cholesterol supplementation on metabolic and liver endpoints in Psammomys obesus (Israeli sand rat). Methods P. obesus were provided ad libitum access to either a standard rodent diet (20% kcal/fat) or a standard rodent diet supplemented with 2% cholesterol (w/w) for 4 weeks. Histological sections of liver from animals on both diets were examined for key features of non-alcoholic steatohepatitis. The expression levels of key genes involved in hepatic lipid metabolism were measured by real-time PCR. Results P. obesus fed a cholesterol-supplemented diet exhibited profound hepatomegaly and steatosis, and higher plasma transaminase levels. Histological analysis identified extensive steatosis, inflammation, hepatocyte injury and fibrosis. Hepatic gene expression profiling revealed decreased expression of genes involved in delivery and uptake of lipids, and fatty acid and triglyceride synthesis, and increased expression of genes involved in very low density lipoprotein cholesterol synthesis, triglyceride and cholesterol export. Conclusions P. obesus rapidly develop non-alcoholic steatohepatitis when fed a cholesterol-supplemented diet that appears to be histologically and mechanistically similar to patients.


BMC Genomics | 2010

Combining target enrichment with barcode multiplexing for high throughput SNP discovery.

Nik Cummings; Robert King; Andre Rickers; Antony Kaspi; Sebastian Lunke; Izhak Haviv; Jeremy B. M. Jowett

BackgroundThe primary goal of genetic linkage analysis is to identify genes affecting a phenotypic trait. After localisation of the linkage region, efficient genetic dissection of the disease linked loci requires that functional variants are identified across the loci. These functional variations are difficult to detect due to extent of genetic diversity and, to date, incomplete cataloguing of the large number of variants present both within and between populations. Massively parallel sequencing platforms offer unprecedented capacity for variant discovery, however the number of samples analysed are still limited by cost per sample. Some progress has been made in reducing the cost of resequencing using either multiplexing methodologies or through the utilisation of targeted enrichment technologies which provide the ability to resequence genomic areas of interest rather that full genome sequencing.ResultsWe developed a method that combines current multiplexing methodologies with a solution-based target enrichment method to further reduce the cost of resequencing where region-specific sequencing is required. Our multiplex/enrichment strategy produced high quality data with nominal reduction of sequencing depth. We undertook a genotyping study and were successful in the discovery of novel SNP alleles in all samples at uniplex, duplex and pentaplex levels.ConclusionOur work describes the successful combination of a targeted enrichment method and index barcode multiplexing to reduce costs, time and labour associated with processing large sample sets. Furthermore, we have shown that the sequencing depth obtained is adequate for credible SNP genotyping analysis at uniplex, duplex and pentaplex levels.


Circulation | 2017

Multicellular transcriptional analysis of mammalian heart regeneration

Gregory A. Quaife-Ryan; Choon Boon Sim; Mark Ziemann; Antony Kaspi; Haloom Rafehi; Mirana Ramialison; Assam El-Osta; James E. Hudson; Enzo R. Porrello

Background: The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we assemble a transcriptomic framework of multiple cardiac cell populations during postnatal development and following injury, which enables comparative analyses of the regenerative (neonatal) versus nonregenerative (adult) state for the first time. Methods: Cardiomyocytes, fibroblasts, leukocytes, and endothelial cells from infarcted and noninfarcted neonatal (P1) and adult (P56) mouse hearts were isolated by enzymatic dissociation and fluorescence-activated cell sorting at day 3 following surgery. RNA sequencing was performed on these cell populations to generate the transcriptome of the major cardiac cell populations during cardiac development, repair, and regeneration. To complement our transcriptomic data, we also surveyed the epigenetic landscape of cardiomyocytes during postnatal maturation by performing deep sequencing of accessible chromatin regions by using the Assay for Transposase-Accessible Chromatin from purified mouse cardiomyocyte nuclei (P1, P14, and P56). Results: Profiling of cardiomyocyte and nonmyocyte transcriptional programs uncovered several injury-responsive genes across regenerative and nonregenerative time points. However, the majority of transcriptional changes in all cardiac cell types resulted from developmental maturation from neonatal stages to adulthood rather than activation of a distinct regeneration-specific gene program. Furthermore, adult leukocytes and fibroblasts were characterized by the expression of a proliferative gene expression network following infarction, which mirrored the neonatal state. In contrast, cardiomyocytes failed to reactivate the neonatal proliferative network following infarction, which was associated with loss of chromatin accessibility around cell cycle genes during postnatal maturation. Conclusions: This work provides a comprehensive framework and transcriptional resource of multiple cardiac cell populations during cardiac development, repair, and regeneration. Our findings define a regulatory program underpinning the neonatal regenerative state and identify alterations in the chromatin landscape that could limit reinduction of the regenerative program in adult cardiomyocytes.


Scientific Reports | 2016

Etiology matters – Genomic DNA Methylation Patterns in Three Rat Models of Acquired Epilepsy

Konrad J. Dębski; Asla Pitkänen; Noora Puhakka; Anna M. Bot; Ishant Khurana; Kn Harikrishnan; Mark Ziemann; Antony Kaspi; Assam El-Osta; Katarzyna Lukasiuk; Katja Kobow

This study tested the hypothesis that acquired epileptogenesis is accompanied by DNA methylation changes independent of etiology. We investigated DNA methylation and gene expression in the hippocampal CA3/dentate gyrus fields at 3 months following epileptogenic injury in three experimental models of epilepsy: focal amygdala stimulation, systemic pilocarpine injection, or lateral fluid-percussion induced traumatic brain injury (TBI) in rats. In the models studies, DNA methylation and gene expression profiles distinguished controls from injured animals. We observed consistent increased methylation in gene bodies and hypomethylation at non-genic regions. We did not find a common methylation signature in all three different models and few regions common to any two models. Our data provide evidence that genome-wide alteration of DNA methylation signatures is a general pathomechanism associated with epileptogenesis and epilepsy in experimental animal models, but the broad pathophysiological differences between models (i.e. pilocarpine, amygdala stimulation, and post-TBI) are reflected in distinct etiology-dependent DNA methylation patterns.


Bioinformatics | 2012

Creating reusable tools from scripts: the Galaxy Tool Factory

Ross Lazarus; Antony Kaspi; Mark Ziemann

MOTIVATION Galaxy is a software application supporting high-throughput biology analyses and work flows, available as a free on-line service or as source code for local deployment. New tools can be written to extend Galaxy, and these can be shared using public Galaxy Tool Shed (GTS) repositories, but converting even simple scripts into tools requires effort from a skilled developer. RESULTS The Tool Factory is a novel Galaxy tool that automates the generation of all code needed to execute user-supplied scripts, and wraps them into new Galaxy tools for upload to a GTS, ready for review and installation through the Galaxy administrative interface. AVAILABILITY AND IMPLEMENTATION The Galaxy administrative interface supports automated installation from the main GTS. Source code and support are available at the project website, https://bitbucket.org/fubar/galaxytoolfactory. The Tool Factory is implemented as an installable Galaxy tool. CONTACT [email protected].


RNA | 2016

Evaluation of microRNA alignment techniques

Mark Ziemann; Antony Kaspi; Assam El-Osta

Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing.


International Journal of Obesity | 2016

DNA methylation regulates hypothalamic gene expression linking parental diet during pregnancy to the offspring's risk of obesity in Psammomys obesus

Ishant Khurana; Antony Kaspi; Mark Ziemann; T Block; Timothy Connor; Briana Spolding; Adrian Cooper; Paul Zimmet; Assam El-Osta; Ken Walder

Background/Objective:The rising incidence of obesity is a major public health issue worldwide. Recent human and animal studies suggest that parental diet can influence fetal development and is implicated with risk of obesity and type 2 diabetes in offspring. The hypothalamus is central to body energy homoeostasis and appetite by controlling endocrine signals. We hypothesise that offspring susceptibility to obesity is programmed in the hypothalamus in utero and mediated by changes to DNA methylation, which persist to adulthood. We investigated hypothalamic genome-wide DNA methylation in Psammomys obesus diet during pregnancy to the offspring’s risk of obesity.Methods:Using methyl-CpG binding domain capture and deep sequencing (MBD-seq), we examined the hypothalamus of offspring exposed to a low-fat diet and standard chow diet during the gestation and lactation period.Results:Offspring exposed to a low-fat parental diet were more obese and had increased circulating insulin and glucose levels. Methylome profiling identified 1447 genomic regions of differential methylation between offspring of parents fed a low-fat diet compared with parents on standard chow diet. Pathway analysis shows novel DNA methylation changes of hypothalamic genes associated with neurological function, nutrient sensing, appetite and energy balance. Differential DNA methylation corresponded to changes in hypothalamic gene expression of Tas1r1 and Abcc8 in the offspring exposed to low-fat parental diet.Conclusion:Subject to parental low-fat diet, we observe DNA methylation changes of genes associated with obesity in offspring.

Collaboration


Dive into the Antony Kaspi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Ziemann

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar

Ishant Khurana

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Ziemann

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haloom Rafehi

Baker IDI Heart and Diabetes Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge