Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antony P. Attwood is active.

Publication


Featured researches published by Antony P. Attwood.


Nature Genetics | 2009

Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region

Jeffrey C. Barrett; James C. Lee; Charles W. Lees; Natalie J. Prescott; Carl A. Anderson; Anne Phillips; Emma Wesley; K. Parnell; Hu Zhang; Hazel E. Drummond; Elaine R. Nimmo; Dunecan Massey; Kasia Blaszczyk; Tim Elliott; L Cotterill; Helen Dallal; Alan J. Lobo; Craig Mowat; Jeremy Sanderson; Derek P. Jewell; William G. Newman; Cathryn Edwards; Tariq Ahmad; John C. Mansfield; Jack Satsangi; Miles Parkes; Christopher G. Mathew; Peter Donnelly; Leena Peltonen; Jenefer M. Blackwell

Ulcerative colitis is a common form of inflammatory bowel disease with a complex etiology. As part of the Wellcome Trust Case Control Consortium 2, we performed a genome-wide association scan for ulcerative colitis in 2,361 cases and 5,417 controls. Loci showing evidence of association at P < 1 × 10−5 were followed up by genotyping in an independent set of 2,321 cases and 4,818 controls. We find genome-wide significant evidence of association at three new loci, each containing at least one biologically relevant candidate gene, on chromosomes 20q13 (HNF4A; P = 3.2 × 10−17), 16q22 (CDH1 and CDH3; P = 2.8 × 10−8) and 7q31 (LAMB1; P = 3.0 × 10−8). Of note, CDH1 has recently been associated with susceptibility to colorectal cancer, an established complication of longstanding ulcerative colitis. The new associations suggest that changes in the integrity of the intestinal epithelial barrier may contribute to the pathogenesis of ulcerative colitis.


Science | 2014

Transcriptional diversity during lineage commitment of human blood progenitors

Lu Chen; Myrto Kostadima; Joost H.A. Martens; Giovanni Canu; Sara P. Garcia; Ernest Turro; Kate Downes; Iain C. Macaulay; Ewa Bielczyk-Maczyńska; Sophia Coe; Samantha Farrow; Pawan Poudel; Frances Burden; Sjoert B. G. Jansen; William Astle; Antony P. Attwood; Tadbir K. Bariana; Bernard de Bono; Alessandra Breschi; John Chambers; Fizzah Choudry; Laura Clarke; Paul Coupland; Martijn van der Ent; Wendy N. Erber; Joop H. Jansen; Rémi Favier; Matthew Fenech; Nicola S. Foad; Kathleen Freson

Introduction Blood production in humans culminates in the daily release of around 1011 cells into the circulation, mainly platelets and red blood cells. All blood cells originate from a minute population of hematopoietic stem cells (HSCs) that expands and differentiates into progenitor cells with increasingly restricted lineage choice. Characterizing alternative splicing events involved in hematopoiesis is critical for interpreting the effects of mutations leading to inherited disorders and blood cancers and for the rational design of strategies to advance transplantation and regenerative medicine. Overview of methodology. RNA-sequencing reads from human blood progenitors [opaque cells in (A)] were mapped to the transcriptome to quantify gene and transcript expression. Reads were also mapped to the genome to identify novel splice junctions and characterize alternative splicing events (B). Rationale To address this, we explored the transcriptional diversity of human blood progenitors by sequencing RNA from six progenitor and two precursor populations representing the classical myeloid commitment stages of hematopoiesis and the main lymphoid stage. Data were aligned to the human reference transcriptome and genome to quantify known transcript isoforms and to identify novel splicing events, respectively. We used Bayesian polytomous model selection to classify transcripts into distinct expression patterns across the three cell types that comprise each differentiation step. Results We identified extensive transcriptional changes involving 6711 genes and 10,724 transcripts and validated a number of these. Many of the changes at the transcript isoform level did not result in significant changes at the gene expression level. Moreover, we identified transcripts unique to each of the progenitor populations, observing enrichment in non–protein-coding elements at the early stages of differentiation. We discovered 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes and often resulting in the gain or loss of functional domains. Of the alternative splice sites displaying differential usage, 73% resulted in exon-skipping events involving at least one protein domain (38.5%) or introducing a premature stop codon (26%). Enrichment analysis of RNA-binding motifs provided insights into the regulation of cell type–specific splicing events. To demonstrate the importance of specific isoforms in driving lineage fating events, we investigated the role of a transcription factor highlighted by our analyses. Our data show that nuclear factor I/B (NFIB) is highly expressed in megakaryocytes and that it is transcribed from an unannotated transcription start site preceding a novel exon. The novel NFIB isoform lacks the DNA binding/dimerization domain and therefore is unable to interact with its binding partner, NFIC. We further show that NFIB and NFIC are important in megakaryocyte differentiation. Conclusion We produced a quantitative catalog of transcriptional changes and splicing events representing the early progenitors of human blood. Our analyses unveil a previously undetected layer of regulation affecting cell fating, which involves transcriptional isoforms switching without noticeable changes at the gene level and resulting in the gain or loss of protein functions. A BLUEPRINT of immune cell development To determine the epigenetic mechanisms that direct blood cells to develop into the many components of our immune system, the BLUEPRINT consortium examined the regulation of DNA and RNA transcription to dissect the molecular traits that govern blood cell differentiation. By inducing immune responses, Saeed et al. document the epigenetic changes in the genome that underlie immune cell differentiation. Cheng et al. demonstrate that trained monocytes are highly dependent on the breakdown of sugars in the presence of oxygen, which allows cells to produce the energy needed to mount an immune response. Chen et al. examine RNA transcripts and find that specific cell lineages use RNA transcripts of different length and composition (isoforms) to form proteins. Together, the studies reveal how epigenetic effects can drive the development of blood cells involved in the immune system. Science, this issue 10.1126/science.1251086, 10.1126/science.1250684, 10.1126/science.1251033 RNA sequencing identifies how different cell fate decisions are made during blood cell differentiation. Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type–specific expression changes: 6711 genes and 10,724 transcripts, enriched in non–protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation—the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.


Genome Medicine | 2015

Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders.

Sarah K. Westbury; Ernest Turro; Daniel Greene; Claire Lentaigne; Anne M. Kelly; Tadbir K. Bariana; Ilenia Simeoni; Xavier Pillois; Antony P. Attwood; Steve Austin; Sjoert B. G. Jansen; Tamam Bakchoul; Abi Crisp-Hihn; Wendy N. Erber; Rémi Favier; Nicola S. Foad; Michael Gattens; Jennifer Jolley; Ri Liesner; Stuart Meacham; Carolyn M. Millar; Alan T. Nurden; Kathelijne Peerlinck; David J. Perry; Pawan Poudel; Sol Schulman; Harald Schulze; Jonathan Stephens; Bruce Furie; Peter N. Robinson

BackgroundHeritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases.MethodsWe report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes.ResultsWe show that 60% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician.ConclusionsThese findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.


Blood | 2016

A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders

Ilenia Simeoni; Jonathan Stephens; Fengyuan Hu; Sri V.V. Deevi; Karyn Megy; Tadbir K. Bariana; Claire Lentaigne; Sol Schulman; Suthesh Sivapalaratnam; Minka J.A. Vries; Sarah K. Westbury; Daniel Greene; Sofia Papadia; Marie Christine Alessi; Antony P. Attwood; Matthias Ballmaier; Gareth Baynam; Emilse Bermejo; Marta Bertoli; Paul F. Bray; Loredana Bury; Marco Cattaneo; Peter William Collins; Louise C. Daugherty; Rémi Favier; Deborah L. French; Bruce Furie; Michael Gattens; Manuela Germeshausen; Cedric Ghevaert

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Science Translational Medicine | 2016

A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies

Ernest Turro; Daniel Greene; Anouck Wijgaerts; Chantal Thys; Claire Lentaigne; Tadbir K. Bariana; Sarah K. Westbury; Anne M. Kelly; Dominik Selleslag; Jonathan Stephens; Sofia Papadia; Ilenia Simeoni; Christopher J. Penkett; Sofie Ashford; Antony P. Attwood; Steve Austin; Tamam Bakchoul; Peter William Collins; Sri V.V. Deevi; Rémi Favier; Myrto Kostadima; Michele P. Lambert; Mary Mathias; Carolyn M. Millar; Kathelijne Peerlinck; David J. Perry; Sol Schulman; Deborah Whitehorn; Christine Wittevrongel; Marc De Maeyer

E527K hyperactive SRC results in megakaryocytes with increased podosome formation, thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. SRC shows its stripes The nonreceptor tyrosine kinase SRC is a proto-oncogene that has been associated with cancer progression. Now, Turro et al. find a gain-of-function mutation in SRC in nine patients with myelofibrosis, bleeding, and bone disorders. This mutation prevented SRC from inhibiting itself, and the overactive SRC resulted in enhanced tyrosine phosphorylation in a zebrafish model as well as in patient-derived cells. In patients with myelofibrosis, this SRC mutation was associated with increased outgrowth of myeloid and megakaryocyte colonies, with abnormal platelet production, which could be rescued by SRC kinase inhibition. These findings may be important for understanding the severe bleeding in cancer patients treated with Src family kinase inhibitors. The Src family kinase (SFK) member SRC is a major target in drug development because it is activated in many human cancers, yet deleterious SRC germline mutations have not been reported. We used genome sequencing and Human Phenotype Ontology patient coding to identify a gain-of-function mutation in SRC causing thrombocytopenia, myelofibrosis, bleeding, and bone pathologies in nine cases. Modeling of the E527K substitution predicts loss of SRC’s self-inhibitory capacity, which we confirmed with in vitro studies showing increased SRC kinase activity and enhanced Tyr419 phosphorylation in COS-7 cells overexpressing E527K SRC. The active form of SRC predominates in patients’ platelets, resulting in enhanced overall tyrosine phosphorylation. Patients with myelofibrosis have hypercellular bone marrow with trilineage dysplasia, and their stem cells grown in vitro form more myeloid and megakaryocyte (MK) colonies than control cells. These MKs generate platelets that are dysmorphic, low in number, highly variable in size, and have a paucity of α-granules. Overactive SRC in patient-derived MKs causes a reduction in proplatelet formation, which can be rescued by SRC kinase inhibition. Stem cells transduced with lentiviral E527K SRC form MKs with a similar defect and enhanced tyrosine phosphorylation levels. Patient-derived and E527K-transduced MKs show Y419 SRC–positive stained podosomes that induce altered actin organization. Expression of mutated src in zebrafish recapitulates patients’ blood and bone phenotypes. Similar studies of platelets and MKs may reveal the mechanism underlying the severe bleeding frequently observed in cancer patients treated with next-generation SFK inhibitors.


Blood | 2016

A comprehensive high-throughput sequencing test for the diagnosis of inherited bleeding, thrombotic and platelet disorders

Ilenia Simeoni; Jonathan Stephens; Fengyuan Hu; Sri V.V. Deevi; Karyn Megy; Tadbir K. Bariana; Claire Lentaigne; Sol Schulman; Suthesh Sivapalaratnam; Minka J.A. Vries; Sarah K. Westbury; Daniel Greene; Sofia Papadia; Marie-Christine Alessi; Antony P. Attwood; Matthias Ballmaier; Gareth Baynam; Emilse Bermejo; Marta Bertoli; Paul F. Bray; Loredana Bury; Marco Cattaneo; Peter William Collins; Louise C. Daugherty; Rémi Favier; Deborah L. French; Bruce Furie; Michael Gattens; Manuela Germeshausen; Cedric Ghevaert

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


Nature Communications | 2017

Platelet function is modified by common sequence variation in megakaryocyte super enhancers

Romina Petersen; John J. Lambourne; Biola M. Javierre; Luigi Grassi; Roman Kreuzhuber; Dace Ruklisa; Isabel M. Rosa; Ana R. Tomé; Heather Elding; Johanna P. van Geffen; Tao Jiang; Samantha Farrow; Jonathan Cairns; Abeer M. Al-Subaie; Sofie Ashford; Antony P. Attwood; Joana Batista; Heleen Bouman; Frances Burden; Fizzah Choudry; Laura Clarke; Paul Flicek; Stephen F. Garner; Matthias Haimel; Carly Kempster; Vasileios Ladopoulos; An-Sofie Lenaerts; Paulina M. Materek; Harriet McKinney; Stuart Meacham

Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.


Blood | 2016

Thrombosis and Hemostasis: A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders

Ilenia Simeoni; Jonathan Stephens; Fengyuan Hu; Sri V.V. Deevi; Karyn Megy; Tadbir K. Bariana; Claire Lentaigne; Sol Schulman; Suthesh Sivapalaratnam; Minka J.A. Vries; Sarah K. Westbury; Daniel Greene; Sofia Papadia; Marie-Christine Alessi; Antony P. Attwood; Matthias Ballmaier; Gareth Baynam; Emilse Bermejo; Marta Bertoli; Paul F. Bray; Loredana Bury; Marco Cattaneo; Peter William Collins; Louise C. Daugherty; Rémi Favier; Deborah L. French; Bruce Furie; Michael Gattens; Manuela Germeshausen; Cedric Ghevaert

Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.


European Journal of Endocrinology | 2009

A HaemAtlas: characterizing gene expression in differentiated human blood cells

Nicholas A. Watkins; Arief Gusnanto; Bernard de Bono; Subhajyoti De; Diego Miranda-Saavedra; Debbie L. Hardie; Will G. J. Angenent; Antony P. Attwood; Peter Ellis; Wendy N. Erber; Nicola S. Foad; Stephen F. Garner; Clare M. Isacke; Jennifer Jolley; Kerstin Koch; Iain C. Macaulay; Sarah L. Morley; Augusto Rendon; K. M. Rice; Niall C. Taylor; Daphne C. Thijssen-Timmer; Marloes R. Tijssen; Schoot van der C. E; Lorenz Wernisch; Thilo Winzer; Frank Dudbridge; Christopher D. Buckley; Cordelia Langford; Sarah A. Teichmann; Berthold Göttgens

Collaboration


Dive into the Antony P. Attwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Gattens

Cambridge University Hospitals NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge