Antti Siiskonen
Tampere University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antti Siiskonen.
Anesthesiology | 2006
Kim K. Lemberg; Vesa K. Kontinen; Antti Siiskonen; Kaarin M. Viljakka; Jari Yli-Kauhaluoma; Esa R. Korpi; Eija Kalso
Background: The pharmacology of oxycodone is poorly understood despite its growing clinical use. The discrepancy between its good clinical effectiveness after systemic administration and the loss of potency after spinal administration led the authors to study the pharmacodynamic effects of oxycodone and its metabolites using in vivo and in vitro models in rats. Methods: Male Sprague-Dawley rats were used in hot-plate, tail-flick, and paw-pressure tests to study the antinociceptive properties of morphine, oxycodone, and its metabolites oxymorphone and noroxycodone. &mgr;-Opioid receptor agonist–stimulated GTP&ggr;[35S] autoradiography was used to study G-protein activation induced by morphine, oxycodone, and oxymorphone in the rat brain and spinal cord. Spontaneous locomotor activity was measured to assess possible sedation or motor dysfunction. Naloxone and the selective &kgr;-opioid receptor antagonist nor-binaltorphimine were used to study the opioid receptor selectivity of the drugs. Results: Oxycodone showed lower efficacy and potency to stimulate GTP&ggr;[35S] binding in the spinal cord and periaqueductal gray compared with morphine and oxymorphone. This could relate to the fact that oxycodone produced only weak naloxone-reversible antinociception after intrathecal administration. It also suggests that the metabolites may have a role in oxycodone-induced analgesia in rats. Intrathecal oxymorphone produced strong long-lasting antinociception, whereas noroxycodone produced antinociception with very high doses only. Subcutaneous administration of oxycodone and oxymorphone produced thermal and mechanical antinociception that was reversed by naloxone but not by nor-binaltorphimine. Oxymorphone was more potent than oxycodone, particularly in the hot-plate and paw-pressure tests. Conclusions: The low intrathecal potency of oxycodone in rats seems be related to its low efficacy and potency to stimulate &mgr;-opioid receptor activation in the spinal cord.
Biochemical Pharmacology | 2010
Olli Salin; Sami Alakurtti; Leena Pohjala; Antti Siiskonen; Viola Maass; Matthias Maass; Jari Yli-Kauhaluoma; Pia Vuorela
Chlamydia pneumoniae is a universal pathogen that has been indicated to play a part in the development of asthma, atherosclerosis and lung cancer. The complete eradication of this intracellular bacterium is in practice impossible with the antibiotics that are currently in use and studies on new antichlamydial compounds is challenging because Chlamydia research lacks the tools required for the genetic modification of this bacterium. Betulin is a natural lupane-class triterpene derived from plants with a wide variety of biological activities. This compound group thus has wide medical potentials, and in fact has been shown to be active against intracellular pathogens. For this reason, betulin and its derivatives were selected to be assayed against C. pneumoniae in the present study. Thirty-two betulin derivatives were assayed against C. pneumoniae using an acute infection model in vitro. Five promising compounds with potential lead compound characteristics were identified. Compound 24 (betulin dioxime) gave a minimal inhibitory concentration (MIC) of 1 microM against strain CWL-029 and showed activity in nanomolar concentrations, as 50% inhibition was achieved at 290 nM. The antichlamydial effect of 24 was confirmed with a clinical isolate CV-6, showing a MIC of 2.2 microM. Previous research on betulin and its derivatives has not identified such a remarkable inhibition of Gram-negative bacterial growth. Furthermore, we also demonstrated that this antichlamydial activity was not due to PLA(2) (EC 3.1.1.4) inhibition caused by the betulin derivatives.
Journal of Medicinal Chemistry | 2010
Leena Keurulainen; Olli Salin; Antti Siiskonen; Jan Marco Kern; Joni Alvesalo; Paula Kiuru; Matthias Maass; Jari Yli-Kauhaluoma; Pia Vuorela
Chlamydia pneumoniae is an intracellular bacterium that responds poorly to antibiotic treatment. Insufficient antibiotic usage leads to chronic infection, which is linked to disease processes of asthma, atherosclerosis, and Alzheimers disease. The Chlamydia research lacks genetic tools exploited by other antimicrobial research, and thus other approaches to drug discovery must be applied. A set of 2-arylbenzimidazoles was designed based on our earlier findings, and 33 derivatives were synthesized. Derivatives were assayed against C. pneumoniae strain CWL-029 in an acute infection model using TR-FIA method at a concentration of 10 μM, and the effects of the derivatives on the host cell viability were evaluated at the same concentration. Fourteen compounds showed at least 80% inhibition, with only minor changes in host cell viability. Nine most potential compounds were evaluated using immunofluorescence microscopy on two different strains of C. pneumoniae CWL-029 and CV-6. The N-[3-(1H-benzimidazol-2-yl)phenyl]-3-methylbenzamide (42) had minimal inhibitory concentration (MIC) of 10 μM against CWL-029 and 6.3 μM against the clinical strain CV-6. This study shows the high antichlamydial potential of 2-arylbenzimidazoles, which also seem to have good characteristics for lead compounds.
Anesthesia & Analgesia | 2008
Kim K. Lemberg; Antti Siiskonen; Vesa K. Kontinen; Jari Yli-Kauhaluoma; Eija Kalso
BACKGROUND:Noroxymorphone is one of the major metabolites of oxycodone. Although oxycodone is commonly used in the treatment of acute and chronic pain, little is known about the antinociceptive effects of noroxymorphone. We present an in vivo pharmacological characterization of noroxymorphone in rats. METHODS:The antinociceptive properties of noroxymorphone were studied with thermal and mechanical models of nociception in rats. RESULTS:Intrathecal noroxymorphone (1 and 5 &mgr;g/10 &mgr;L) induced a significantly longer lasting antinociceptive effect compared with oxycodone (200 &mgr;g/10 &mgr;L) and morphine (1 and 5 &mgr;g/10 &mgr;L). Pretreatment with subcutaneous naloxone (1 mg/kg) 15 min before intrathecal drug administration significantly decreased the antinociceptive effect of both noroxymorphone and morphine, indicating an opioid receptor-mediated antinociceptive effect. In the hotplate, paw pressure, and tail flick tests, subcutaneous noroxymorphone was inactive in doses of 5, 10, and 25 mg/kg. Also, no effect on motor function was observed in the rotarod test with doses studied. No antihyperalgesic effect was observed in the carrageenan model for inflammation in rats with subcutaneous noroxymorphone 25 mg/kg. CONCLUSIONS:The results of this study indicate that noroxymorphone is a potent &mgr;-opioid receptor agonist when administered intrathecally. The lack of systemic efficacy may indicate reduced ability of noroxymorphone to penetrate the blood–brain barrier due to its low calculated logD value (log octanol/water partition coefficient). Thus, noroxymorphone should have a negligible role in analgesia after systemic administration of oxycodone. Because of its spinal efficacy and long duration of effect, noroxymorphone is an interesting opioid for spinal analgesia with a low potential for abuse. Its safety for spinal administration should be assessed before clinical use.
Chemistry of Materials | 2016
Francisco Fernandez-Palacio; Mikko Poutanen; Marco Saccone; Antti Siiskonen; Giancarlo Terraneo; Giuseppe Resnati; Olli Ikkala; Pierangelo Metrangolo; Arri Priimagi
Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate that <4% of the mesogenic units in the cis-form suffices to trigger the full LC-to-isotropic phase transition. We also report a light-induced and reversible crystal-to-isotropic phase transition, which has not been previously observed in supramolecular complexes. In addition to fundamental understanding of light-responsive supramolecular complexes, we foresee this study to be important in the development of bistable photonic devices and supramolecular actuators.
Biological Chemistry | 2006
Ingo Bichlmaier; Antti Siiskonen; Mika Kurkela; Moshe Finel; Jari Yli-Kauhaluoma
Abstract The stereoselective binding and transformation of optically pure bicyclic alcohols by human UDP-glucuronosyltransferases from subfamily 2B were investigated. The enantiomers of 1-indanol, 1-tetralol, and 1-benzosuberol were synthesized by asymmetric Corey-Bakshi-Shibata reduction and subjected to glucuronidation assays. The alcohols studied were primarily glucuronidated by UGT2B7 and UGT2B17. The catalytic transformation by UGT2B17 was highly stereoselective, favoring conjugation of the (R)-enantiomers. UGT2B7, on the other hand, did not exhibit stereoselectivity toward 1-benzosuberol, the best substrate in this series. To assess binding affinities to the enzymes, the six different compounds were tested for their efficiency as inhibitors of either UGT2B7 or UGT2B17. The results of the latter analyses indicated that the affinities of both enantiomers of each pair towards UGT2B7 and UGT2B17 were of the same order of magnitude. Therefore, the findings of this study suggest that the spatial arrangement of the hydroxy group plays an important role in the glucuronic acid transfer reaction, but not necessarily in substrate binding to the UGTs.
Bioorganic & Medicinal Chemistry Letters | 2015
Leena Keurulainen; Antti Siiskonen; Abedelmajeed Nasereddin; Dmitry Kopelyanskiy; Nina Sacerdoti-Sierra; Teppo O. Leino; Päivi Tammela; Jari Yli-Kauhaluoma; Charles L. Jaffe; Paula Kiuru
A set of 56 2-arylbenzimidazoles was designed, synthesized and tested against Leishmania donovani amastigotes. The left- and right-hand side rings of the molecule, as well as the amide linker were modified. Structurally different derivatives were screened on L. donovani axenic amastigotes at concentrations of 5, 15 and 50 μM, and the ten most active derivatives were selected for further testing. 2-Arylbenzimidazole derivative 24 was active against L. donovani-infected THP-1 cells showing 46% parasite inhibition at 5 μM.
Bioorganic & Medicinal Chemistry Letters | 2012
Antti Siiskonen; Leena Keurulainen; Olli Salin; Paula Kiuru; Leena Pohjala; Pia Vuorela; Jari Yli-Kauhaluoma
Chlamydia pneumoniae is a worldwide cause of various respiratory track diseases ranging from asymptomatic pharyngeal infection to severe, sometimes fatal pneumonia. We have previously identified 2-arylbenzimidazoles as highly active antichlamydial compounds. In this work the importance of conformational effects on the structure-activity relationship of these compounds was studied. To simplify calculations, properly substituted N-phenylbenzamides, or the corresponding heterocyclic compounds, and 2-arylbenzimidazoles were used as model compounds. They were energy minimized and the energy differences between certain conformations were calculated. The main finding was that the compounds which can more easily adopt a non-planar conformation show higher bioactivity. This finding can be utilized in designing new derivatives or in constructing a pharmacophore model.
Journal of Molecular Modeling | 2017
Antti Siiskonen; Arri Priimagi
In recent years, halogen bonding has become an important design tool in crystal engineering, supramolecular chemistry and biosciences. The fundamentals of halogen bonding have been studied extensively with high-accuracy computational methods. Due to its non-covalency, the use of triple-zeta (or larger) basis sets is often recommended when studying halogen bonding. However, in the large systems often encountered in supramolecular chemistry and biosciences, large basis sets can make the calculations far too slow. Therefore, small basis sets, which would combine high computational speed and high accuracy, are in great demand. This study focuses on comparing how well density functional theory (DFT) methods employing small, double-zeta basis sets can estimate halogen-bond strengths. Several methods with triple-zeta basis sets are included for comparison. Altogether, 46 DFT methods were tested using two data sets of 18 and 33 halogen-bonded complexes for which the complexation energies have been previously calculated with the high-accuracy CCSD(T)/CBS method. The DGDZVP basis set performed far better than other double-zeta basis sets, and it even outperformed the triple-zeta basis sets. Due to its small size, it is well-suited to studying halogen bonding in large systems.
Journal of Medicinal Chemistry | 2015
Leena Keurulainen; Mikko Vahermo; Margarita Puente-Felipe; Elena Sandoval-Izquierdo; Benigno Crespo-Fernández; Laura Guijarro-López; Leticia Huertas-Valentín; Laura de las Heras-Dueña; Teppo O. Leino; Antti Siiskonen; Lluís Ballell-Pages; Laura Sanz; Pablo Castañeda-Casado; M. Belén Jiménez-Díaz; María S. Martínez-Martínez; Sara Viera; Paula Kiuru; Félix Calderón; Jari Yli-Kauhaluoma
Malaria continues to be a major global health problem, being particularly devastating in the African population under the age of five. Artemisinin-based combination therapies (ACTs) are the first-line treatment recommended by the WHO to treat Plasmodium falciparum malaria, but clinical resistance against them has already been reported. As a consequence, novel chemotypes are urgently needed. Herein we report a novel, in vivo active, fast-acting antimalarial chemotype based on a benzimidazole core. This discovery is the result of a medicinal chemistry plan focused on improving the developability profile of an antichlamydial chemical class previously reported by our group.