Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anu Thomas is active.

Publication


Featured researches published by Anu Thomas.


PLOS ONE | 2011

Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin.

Tiffani A. Greene; Suzanne Alarcon; Anu Thomas; Eli Berdougo; Benjamin J. Doranz; Paul A. S. Breslin; Joseph Rucker

Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad specificity bitter blockers to improve nutrition and medical compliance.


The FASEB Journal | 2013

Stress-inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia via the prion protein

Flavio H. Beraldo; Iaci N. Soares; Daniela F. Goncalves; Jue Fan; Anu Thomas; Tiago G. Santos; Amro H. Mohammad; Martín Roffé; Michele Calder; Simona Nikolova; Glaucia N. M. Hajj; André Luiz Sena Guimarães; André Ricardo Massensini; Ian Welch; Dean H. Betts; Robert Gros; Maria Drangova; Andrew J. Watson; Robert Bartha; Vania F. Prado; Vilma R. Martins; Marco A. M. Prado

Stress‐inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase‐3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1‐mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild‐type astrocytes by 3‐fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia‐mediated neuronal death in a prion protein‐dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.—Beraldo, F. H., Soares, I. N., Goncalves, D. F., Fan, J., Thomas, A. A., Santos, T. G., Mohammad, A. H., Roffe, M., Calder, M. D., Nikolova, S., Hajj, G. N., Guimaraes, A. N., Massensini, A. R., Welch, I., Betts, D. H., Gros, R., Drangova, M., Watson, A. J., Bartha, R., Prado, V. F., Martins, V. R., and Prado, M. A. M., Stress‐inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia via the prion protein. FASEB J. 27, 3594–3607 (2013). www.fasebj.org


Nanoscale Research Letters | 2009

In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

Jin Zhang; Lynne-Marie Postovit; Dashan Wang; R. B. Gardiner; Richard Harris; Mumin Md Abdul; Anu Thomas

Basic fibroblast growth factor (bFGF), a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs) with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d) of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.


BMC Neuroscience | 2015

A functional comparison of the domestic cat bitter receptors Tas2r38 and Tas2r43 with their human orthologs

Michelle M. Sandau; Jason Goodman; Anu Thomas; Joseph Rucker; Nancy E. Rawson

BackgroundDomestic cats (felis catus) have a reputation for being rather unpredictable in their dietary choices. While their appetite for protein or savory flavors is consistent with their nutritional needs, their preference among protein-sufficient dietary options may relate to differences in the response to other flavor characteristics. Studies of domestic cat taste perception are limited, in part, due to the lack of receptor sequence information. Several studies have described the phylogenetic relationship of specific cat taste receptor sequences as compared with other carnivores. For example, domestic cats are obligate carnivores and their receptor Tas1r2, associated with the human perception of sweet, is present only as a pseudogene. Similarly, the cat perception of bitter may differ from that of other mammals due to variations in their repertoire of bitter receptor (Tas2r) genes. This report includes the first functional characterization of domestic cat taste receptors.ResultsWe functionally expressed two uncharacterized domestic sequences Tas2r38 and Tas2r43 and deorphanized the receptors using a cellular functional assay. Statistical significance was determined using an unpaired, two-tailed t-test. The cat sequence for Tas2r38 contains 3 major amino acid residues known to confer the taster phenotype (PAI), which is associated with sensitivity to the bitter compounds PROP and PTC. However, in contrast to human TAS2R38, cat Tas2r38 is activated by PTC but not by PROP. Furthermore, like its human counterpart, cat Tas2r43 is activated by aloin and denatonium, but differs from the human TAS2R43 by insensitivity to saccharin. The responses of both cat receptors to the bitter ligands were concentration-dependent and were inhibited by the human bitter blocker probenecid.ConclusionsThese data demonstrate that the response profiles of the cat bitter receptors Tas2r38 and Tas2r43 are distinct from those of their orthologous human receptors. Results with cat Tas2r38 also demonstrate that additional residues beyond those classically associated with PROP sensitivity in humans influence the sensitivity to PROP and PTC. Functional studies of the human bitter receptor family are being applied to the development of food and medicinal products with more appealing flavor profiles. Our work lays the foundation for similar work applied to felines.


Disease Models & Mechanisms | 2015

Hyperactivity and attention deficits in mice with decreased levels of stress inducible phosphoprotein 1 (STIP1)

Flavio H. Beraldo; Anu Thomas; Benjamin Kolisnyk; Pedro H. F. Hirata; Xavier De Jaeger; Amanda C. Martyn; Jue Fan; Daniela F. Goncalves; Matthew F. Cowan; Talal Masood; Vilma R. Martins; Robert Gros; Vania F. Prado; Marco A. M. Prado

ABSTRACT Stress-inducible phosphoprotein I (STIP1, STI1 or HOP) is a co-chaperone intermediating Hsp70/Hsp90 exchange of client proteins, but it can also be secreted to trigger prion protein-mediated neuronal signaling. Some mothers of children with autism spectrum disorders (ASD) present antibodies against certain brain proteins, including antibodies against STIP1. Maternal antibodies can cross the fetus blood-brain barrier during pregnancy, suggesting the possibility that they can interfere with STIP1 levels and, presumably, functions. However, it is currently unknown whether abnormal levels of STIP1 have any impact in ASD-related behavior. Here, we used mice with reduced (50%) or increased STIP1 levels (fivefold) to test for potential ASD-like phenotypes. We found that increased STIP1 regulates the abundance of Hsp70 and Hsp90, whereas reduced STIP1 does not affect Hsp70, Hsp90 or the prion protein. Interestingly, BAC transgenic mice presenting fivefold more STIP1 show no major phenotype when examined in a series of behavioral tasks, including locomotor activity, elevated plus maze, Morris water maze and five-choice serial reaction time task (5-CSRTT). In contrast, mice with reduced STIP1 levels are hyperactive and have attentional deficits on the 5-CSRTT, but exhibit normal performance for the other tasks. We conclude that reduced STIP1 levels can contribute to phenotypes related to ASD. However, future experiments are needed to define whether it is decreased chaperone capacity or impaired prion protein signaling that contributes to these phenotypes. Summary: Here, using a series of behavioral tests including touchscreen tasks we show that decreased levels of stress-inducible phosphoprotein 1 (STIP1) lead to attention deficits and hyperactivity in mice.


PLOS ONE | 2017

miR-146a regulates glucose induced upregulation of inflammatory cytokines extracellular matrix proteins in the retina and kidney in diabetes

Shali Chen; Biao Feng; Anu Thomas; Subrata Chakrabarti; Alexander V. Ljubimov

Hyperglycemic damage to the endothelial cells (ECs) leads to increased synthesis of inflammatory cytokines. We have previously shown miR-146a downregulation in ECs and in the tissues of diabetic mice. Here we investigated the role of miR-146a, in the production of specific inflammatory cytokines and extracellular matrix (ECM) proteins in retina and kidneys in diabetes. We generated an endothelial specific miR-146a overexpressing transgenic mice (TG). We investigated these mice and wild type (WT) controls with or without streptozotocin (STZ) induced diabetes. Retinal and renal cortical tissues from the mice were examined for mRNAs for specific inflammatory markers, (ECM) proteins and inflammation inducible transcription factor by real time RT-PCR. Corresponding proteins, where possible, were examined using immunofluorescence or ELISA. In parallel, we examined ECs following incubation with various levels of glucose with or without miR-146a mimic transfection. In the retina and kidneys of WT mice with diabetes, increased expression of inflammatory markers (IL-6, TNFα, IL1β) in association augmented expression of ECM proteins (collagen 1αIV, fibronectin) and NF κB-P65 were observed, compared to WT non-diabetic controls. These changes were prevented in diabetic miR-146a TG mice along with retinal and renal functional and structural changes. In vitro studies showed similar changes in the ECs exposed to high glucose. Such changes were corrected in the cells following miR-146a mimic transfection. Further analyses of renal cortical tissues showed diabetes induced significant upregulation of two regulators of NFκB, namely Interleukin-1 associated Kinase 1 and tumour necrosis factor receptor associated factor. Such changes were prevented in diabetic TG animals. These data indicate that augmented production of inflammatory cytokines and ECM proteins in the retina and kidneys in diabetes are regulated through endothelium derived miR-146a. Identification of such novel mechanisms may potentially lead to the development of novel therapies.


American Journal of Physiology-endocrinology and Metabolism | 2018

ANRIL regulates production of extracellular matrix proteins and vasoactive factors in diabetic complications

Anu Thomas; Biao Feng; Subrata Chakrabarti

noncoding RNAs (lncRNAs) have gained widespread interest due to their prevailing presence in various diseases. lncRNA ANRIL (a. k. a. CDKN2B-AS1) is located on human chromosome 9 (p21.3) and transcribed in opposite direction to the INK4b-ARF-INK4a gene cluster. It has been identified as a highly susceptible region for diseases such as coronary artery diseases and type 2 diabetes. Here, we explored its regulatory role in diabetic nephropathy (DN) and diabetic cardiomyopathy (DCM) in association with epigenetic modifiers p300 and polycomb repressive complex 2 (PRC2) complex. We used an ANRIL-knockout (ANRILKO) mouse model for this study. The wild-type and ANRILKO animals with or without streptozotocin-induced diabetes were monitored for 2 min. At the end of the time point, urine and tissues were collected. The tissues were measured for fibronectin (FN), type IV collagen (Col1α4), and VEGF mRNA and protein expressions. Renal function was determined by the measurement of 24-h urine volume and albumin/creatinine ratio at euthanasia. Renal and cardiac structures were investigated using periodic acid-Schiff stain and/or immunohistochemical analysis. Elevated expressions of extracellular matrix (ECM) proteins were prevented in ANRILKO diabetic animals. Furthermore, ANRILKO had a protective effect on diabetic mouse kidneys, as evidenced by lowering of urine volume and urine albumin levels in comparison with the wild-type diabetic animals. These alterations regulated by ANRIL may be mediated by p300 and enhancer of zeste 2 (EZH2) of the PRC2 complex. Our study concludes that ANRIL regulates functional and structural alterations in the kidneys and hearts in diabetes through controlling the expressions of ECM proteins and VEGF.


Scientific Reports | 2017

The Bitter Taste Receptor TAS2R16 Achieves High Specificity and Accommodates Diverse Glycoside Ligands by using a Two-faced Binding Pocket

Anu Thomas; Chidananda Sulli; Edgar Davidson; Eli Berdougo; Morganne Phillips; Bridget A. Puffer; Cheryl Paes; Benjamin J. Doranz; Joseph Rucker

Although bitter taste receptors (TAS2Rs) are important for human health, little is known of the determinants of ligand specificity. TAS2Rs such as TAS2R16 help define gustatory perception and dietary preferences that ultimately influence human health and disease. Each TAS2R must accommodate a broad diversity of chemical structures while simultaneously achieving high specificity so that diverse bitter toxins can be detected without all foods tasting bitter. However, how these G protein-coupled receptors achieve this balance is poorly understood. Here we used a comprehensive mutation library of human TAS2R16 to map its interactions with existing and novel agonists. We identified 13 TAS2R16 residues that contribute to ligand specificity and 38 residues whose mutation eliminated signal transduction by all ligands, providing a comprehensive assessment of how this GPCR binds and signals. Our data suggest a model in which hydrophobic residues on TM3 and TM7 form a broad ligand-binding pocket that can accommodate the diverse structural features of β-glycoside ligands while still achieving high specificity.


MRS Proceedings | 2009

Encapsulation of BSA within Gelatin Nanoparticles-laden Biopolymer Film

Jin Zhang; Jesse Zhu; Kazi Farida Akhter; Anu Thomas

This research project aims at the development of new biopolymer nanocomposites which enable to act as a critical component to next generation medical device. In this paper, we developed an in situ method to encapsulate model protein, bovine serum albumin (BSA), within gelatin nanoparticles (NPs). The results demonstrate that the average diameter of the BSA-containing gelatin NPs is approximately 180 nm±10 nm. They can absorb up to 70% of water. The gelatin- nanoencapuslated BSA afterwards were loaded in the biopolymer film with thickness around 150 μm composed of poly(2-hydroxyethyl methacrylate) (pHEMA) through the photopolymerization. The release kinetics of BSA from the nanoparticles and the nanoparticle-laden p(HEMA) were studied through UV-Vis spectrometry, respectively. The releasing concentration of BSA increased with time (t), and about 80% of the encapsulated BSA was released in 80 hrs; while, the releasing profile of BSA from the gelatin nanoparticles-loaded hydrogel can be monitored up to10 days. These studies show that the gelatin nanoparticles are able to encapsulate water-soluble protein. The hydrogel film, pHEMA, enable to further prolong the releasing profile for the water soluble protein. It is expected that this new biodegradable polymer nanocomposites can be an alternative materials for consisting of implant medical device for protein therapy.


Scientific Reports | 2018

MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy

Saumik Biswas; Anu Thomas; Shali Chen; Erfan Aref-Eshghi; Biao Feng; John R. Gonder; Bekim Sadikovic; Subrata Chakrabarti

Despite possessing limited protein-coding potential, long non-coding RNAs (lncRNAs) have been implicated in a myriad of pathologic conditions. Most well documented in cancer, one prominent intergenic lncRNA known as MALAT1 is notorious for its role in impacting epigenetic mechanisms. In this study, we established a novel epigenetic paradigm for MALAT in diabetic retinopathy (DR) by employing siRNA-mediated MALAT1 knockdown in human retinal endothelial cells (HRECs), a Malat1 knockout animal model, vitreous humor from diabetic patients, pharmacological inhibitors for histone and DNA methylation, RNA immunoprecipitation, western blotting, and a unique DNA methylation array to determine glucose-related alterations in MALAT1. Our findings indicated that MALAT1 is capable of impacting the expressions of inflammatory transcripts through its association with components of the PRC2 complex in diabetes. Furthermore, the vitreous humors from diabetic patients revealed increased expressions of MALAT1, TNF-α, and IL-6. Intriguingly, our DNA methylation array demonstrated that transient high glucose exposure in HRECs does not contribute to significant methylation alterations at CpG sites across the MALAT1 gene. However, global inhibition of DNA methyltransferases induced significant increases in MALAT1 and associated inflammatory transcripts in HRECs. Our findings collectively demonstrate the importance of MALAT1 in inflammation and epigenetic regulation in DR.

Collaboration


Dive into the Anu Thomas's collaboration.

Top Co-Authors

Avatar

Subrata Chakrabarti

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Biao Feng

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Shali Chen

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Saumik Biswas

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Joseph Rucker

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jin Zhang

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

John R. Gonder

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bekim Sadikovic

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Erfan Aref-Eshghi

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge