Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anu Vaikkinen is active.

Publication


Featured researches published by Anu Vaikkinen.


Analytical Chemistry | 2012

Infrared Laser Ablation Atmospheric Pressure Photoionization Mass Spectrometry

Anu Vaikkinen; Bindesh Shrestha; Tiina J. Kauppila; Akos Vertes; Risto Kostiainen

In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves.


Rapid Communications in Mass Spectrometry | 2014

Laser ablation atmospheric pressure photoionization mass spectrometry imaging of phytochemicals from sage leaves

Anu Vaikkinen; Bindesh Shrestha; Juha Koivisto; Risto Kostiainen; Akos Vertes; Tiina J. Kauppila

RATIONALE Despite fast advances in ambient mass spectrometry imaging (MSI), the study of neutral and nonpolar compounds directly from biological matrices remains challenging. In this contribution, we explore the feasibility of laser ablation atmospheric pressure photoionization (LAAPPI) for MSI of phytochemicals in sage (Salvia officinalis) leaves. METHODS Sage leaves were studied by LAAPPI-time-of-flight (TOF)-MSI without any sample preparation. Leaf mass spectra were also recorded with laser ablation electrospray ionization (LAESI) mass spectrometry and the spectra were compared with those obtained by LAAPPI. RESULTS Direct probing of the plant tissue by LAAPPI efficiently produced ions from plant metabolites, including neutral and nonpolar terpenes that do not have polar functional groups, as well as oxygenated terpene derivatives. Monoterpenes and monoterpenoids could also be studied from sage by LAESI, but only LAAPPI was able to detect larger nonpolar compounds, such as sesquiterpenes and triterpenoid derivatives, from the leaf matrix. Alternative MSI methods for nonpolar compounds, such as desorption atmospheric pressure photoionization (DAPPI), do not achieve as good spatial resolution as LAAPPI (<400 µm). CONCLUSIONS We show that MSI with LAAPPI is a useful tool for concurrently studying the distribution of polar and nonpolar compounds, such as phytochemicals, directly from complex biological samples, and it can provide information that is not available by other, established methods.


Analytica Chimica Acta | 2010

Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

Anu Vaikkinen; T. Kotiaho; Risto Kostiainen; Tiina J. Kauppila

Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine, were observed in the MS spectrum.


Analytical Chemistry | 2012

Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

Anu Vaikkinen; Markus Haapala; Hendrik Kersten; Thorsten Benter; Risto Kostiainen; Tiina J. Kauppila

A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production.


Rapid Communications in Mass Spectrometry | 2015

Analysis of neonicotinoids from plant material by desorption atmospheric pressure photoionization-mass spectrometry

Anu Vaikkinen; Henning S. Schmidt; Iiro Kiiski; Sari Rämö; Kati S. Hakala; Markus Haapala; Risto Kostiainen; Tiina J. Kauppila

RATIONALE Neonicotinoids are widely used insecticides which have been shown to affect the memory and learning abilities of honey bees, and are suspected to play a part in the unexplainable, large-scale loss of honey bee colonies. Fast methods, such as ambient mass spectrometry (MS), for their analysis from a variety of matrices are necessary to control the use of forbidden products and study the spreading of insecticides in nature. METHODS The feasibilities of two ambient MS methods, desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI), for the analysis of five most used neonicotinoid compounds, thiacloprid, acetamiprid, clothianidin, imidacloprid and thiamethoxam, were tested. In addition, DAPPI was used to analyze fresh rose leaves treated with commercially available thiacloprid insecticide and dried and powdered turnip rape flowers, which had been collected from a field treated with thiacloprid-containing insecticide. RESULTS DAPPI was found to be more sensitive than DESI, with 2-11 times better signal-to-noise ratios, and limits of detection at 0.4-5.0 fmol for the standard compounds. DAPPI was able to detect thiacloprid from the rose leaves even 2.5 months after the treatment and from the turnip rape flower samples collected from a field. The analysis of plant material by DAPPI did not require extraction or other sample preparation. CONCLUSIONS DAPPI was found to be suitable for the fast and direct qualitative analysis of thiacloprid neonicotinoid from plant samples. It shows promise as a fast tool for screening of forbidden insecticides, or studying the distribution of insecticides in nature.


Analytical Chemistry | 2015

Solvent jet desorption capillary photoionization-mass spectrometry.

Markus Haapala; Jaakko Teppo; Elisa Ollikainen; Iiro Kiiski; Anu Vaikkinen; Tiina J. Kauppila; Risto Kostiainen

A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.


Journal of the American Society for Mass Spectrometry | 2016

Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

Anu Vaikkinen; Tiina J. Kauppila; Risto Kostiainen

AbstractThe efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05–0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstractᅟ


Analytica Chimica Acta | 2015

Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy.

Anu Vaikkinen; Jan Rejšek; Vladimír Vrkoslav; Tiina J. Kauppila; Josef Cvačka; Risto Kostiainen

Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography-mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid-liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI-HRMS, and free steroids by positive ion mode DAPPI-HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy.


Analytica Chimica Acta | 2015

The detection and mapping of the spatial distribution of insect defense compounds by desorption atmospheric pressure photoionization Orbitrap mass spectrometry.

Jan Rejšek; Vladimír Vrkoslav; Robert Hanus; Anu Vaikkinen; Markus Haapala; Tiina J. Kauppila; Risto Kostiainen; Josef Cvačka

Many insects use chemicals synthesized in exocrine glands and stored in reservoirs to protect themselves. Two chemically defended insects were used as models for the development of a new rapid analytical method based on desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The distribution of defensive chemicals on the insect body surface was studied. Since these chemicals are predominantly nonpolar, DAPPI was a suitable analytical method. Repeatability of DAPPI-MS signals and effects related to non-planarity and roughness of samples were investigated using acrylic sheets uniformly covered with an analyte. After that, analytical figures of merit of the technique were determined. The spatial distribution of (E)-1-nitropentadec-1-ene, a toxic nitro compound synthesized by soldiers of the termite Prorhinotermes simplex, was investigated. Then, the spatial distribution of the unsaturated aldehydes (E)-hex-2-enal, (E)-4-oxohex-2-enal, (E)-oct-2-enal, (E,E)-deca-2,4-dienal and (E)-dec-2-enal was monitored in the stink bug Graphosoma lineatum. Chemicals present on the body surface were scanned along the median line of the insect from the head to the abdomen and vice versa, employing either the MS or MS(2) mode. In this fast and simple way, the opening of the frontal gland on the frons of termite soldiers and the position of the frontal gland reservoir, extending deep into the abdominal cavity, were localized. In the stink bug, the opening of the metathoracic scent glands (ostiole) on the ventral side of the thorax as well as the gland reservoir in the median position under the ventral surface of the anterior abdomen were detected and localized. The developed method has future prospects in routine laboratory use in life sciences.


Analytical Chemistry | 2016

Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

Jan Rejšek; Vladimír Vrkoslav; Anu Vaikkinen; Markus Haapala; Tiina J. Kauppila; Risto Kostiainen; Josef Cvačka

Desorption atmospheric pressure photoionization (DAPPI) allows surface analysis in the open atmosphere and is thus an appropriate method for the direct coupling of thin-layer chromatography (TLC) and mass spectrometry (MS). Here, the capability of DAPPI-MS for ionizing and detecting lipids, namely, cholesterol, triacylglycerols, 1,2-diol diesters, wax esters, cholesteryl esters, and hydrocarbons, from TLC and high-performance thin-layer chromatography (HPTLC) plates in MS and MS2 modes was tested. Limits of detection for lipid standards separated using normal-phase (NP)-TLC and NP-HPTLC were established. TLC/DAPPI-MS was applied for lipids of vernix caseosa, a white creamy proteolipid biofilm that progressively coats the fetus during the last trimester of the pregnancy, and plant oils including caraway, parsley, safflower, and jojoba oils. Various lipids were identified by means of high resolution/accurate mass measurement of Orbitrap and comparison of the retardation factors with standards. Lipid class separation was carried out on the NP-HPTLC plates, whereas individual triacylglycerol and wax ester species were separated on the reversed-phase HPTLC plates. DAPPI-MS was found to be a simple, rapid, and efficient approach for detecting lipids separated by TLC.

Collaboration


Dive into the Anu Vaikkinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Cvačka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vladimír Vrkoslav

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Iiro Kiiski

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akos Vertes

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Bindesh Shrestha

George Washington University

View shared research outputs
Researchain Logo
Decentralizing Knowledge