Anuj M. Bhatt
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anuj M. Bhatt.
Current Biology | 2002
Claudia Canales; Anuj M. Bhatt; Rod J. Scott; Hugh G. Dickinson
BACKGROUND Plant germlines arise late in development from archesporial initials in the L2 layer of the anther and ovule primordia. These cells generate a radially symmetrical array of tissues that, in the Arabidopsis anther, comprises a core of sporogenous cells (meiocytes) and the enveloping tapetum, middle cell, and endothecium layers. The putative transcription factor NZZ/SPL is required for the specification of archesporial cells, but nothing is known of how their number is regulated, or what controls cell fate in the lineages they generate. Here, we report detailed characterization of extra sporogenous cells (exs), a male sterile mutant that generates extra meiocytes but lacks tapetal and middle cell layers. RESULTS We identified the EXS locus by map-based cloning and found it to encode a putative LRR receptor kinase. In the anther, an increased number of L2 layer cells assume an archesporial fate and divide to generate a larger number of sporogenous cells. In seeds, the exs mutation results in smaller embryonic cells, delayed embryo development, and smaller mature embryos. Consistent with the observed phenotype, EXS is expressed in the inflorescence meristem, floral apices, anthers, and in developing seeds. CONCLUSIONS EXS regulates the number of cells that divide in the L2 layer of the anther, and thus the number of functional male archesporial initials. In the young seed, EXS affects cell size in the embryo and the rate at which it develops. The apparently contrasting roles of EXS in the anther and embryo suggest that signaling through the EXS receptor kinase is a feature of a number of regulatory pathways in Arabidopsis.
Molecular Genetics and Genomics | 1992
Ian Bancroft; Anuj M. Bhatt; Christina Sjodin; Steve Scofield; Jonathan D. G. Jones; Caroline Dean
SummaryModified Ac and Ds elements, in combination with dominant markers (to facilitate monitoring of excision, reinsertion and segregation of the elements) were introduced into Arabidopsis thaliana ecotype Landsberg erecta. The frequencies of somatic and germinal transactivation of the Ds elements were monitored using a streptomycin resistance assay. Transactivation was significantly higher from a stable Ac (sAc) carrying a 537 by deletion of the CpG-rich 5′ untranslated leader of the transposase mRNA than from a wild-type sAc. However, substitution of the central 1.77 kb of the transposase open reading frame (ORF) with a hygromycin resistance marker did not alter the excision frequency of a Ds element. β-Glucuronidase (GUS) or iaaH markers were linked to the transposase source to allow the identification of plants in which the transposase source had segregated away from the transposed Ds element, eliminating the possibility of somatic or germinal re-activation. Segregation of the excision marker, Ds and sAc was monitored in the progeny of plants showing germinal excision of Ds. 29% of the plants inheriting the excision marker carried a transposed Ds element.
Trends in Plant Science | 2001
Anuj M. Bhatt; Claudia Canales; Hugh G. Dickinson
Meiosis is pivotal in the life history of plants. In addition to providing an opportunity for genetic reassortment, it marks the transition from diploid sporophyte to haploid gametophyte. Recent molecular data suggest that, like animals, plants possess a common set of genes (also conserved in eukaryotic microorganisms) responsible for meiotic recombination and chromosome segregation. However, unlike animals, plant meiocytes do not differentiate from a pool of primordial germ cells, but rather arise de novo from a germline formed from sub-epidermal cells in the anthers and ovules. Mutants defective in the specification of these reproductive cell lines and disrupted in different aspects of the meiotic process are beginning to reveal many features unique to plant meiosis.
The Plant Cell | 1998
Anuj M. Bhatt; Clare Lister; Nigel M. Crawford; Caroline Dean
Tag1 was identified as a highly active endogenous transposable element in transgenic Arabidopsis thaliana Landsberg erecta plants carrying the maize transposable element Activator (Ac). Here, we describe experiments designed to determine the basis for the high activity of Tag1. The frequency of transposition of Tag1 elements was compared in lines containing or lacking Ac transposase to assess the effect of Ac transposase on Tag1 activity. Three populations of nontransgenic plants, including nontransformed regenerants, were also analyzed. The high level of activity of Tag1 did not correlate with the presence or absence of Ac transposase but was significantly higher in transgenic lines. This result was maintained through at least six generations after transformation. These data suggest that Tag1 transposition is stimulated by processes that occur during the Agrobacterium transformation and that thereafter remain active. Two Tag1 elements are tightly linked in the Landsberg erecta genome and map to the lower arm of chromosome 1. Tag1 elements were found in only a few A. thaliana ecotypes but were present in four other Arabidopsis species.
Journal of Molecular Biology | 2010
Adam J. Bowen; Deyarina Gonzalez; Jonathan G. L. Mullins; Anuj M. Bhatt; Alberto Martinez; R. Steven Conlan
The eukaryotic SIN3 protein is the central component of the evolutionarily conserved multisubunit SIN3 complex that has roles in regulating gene expression and genome stability. Here we characterise the structure of the SIN3 protein in higher plants through the analysis of SNL1 (SIN3-LIKE1), SNL2, SNL3, SNL4, SNL5 and SNL6, a family of six SIN3 homologues in Arabidopsis thaliana. In an Arabidopsis-protoplast beta-glucuronidase reporter gene assay, as well as in a heterologous yeast repression assay, full-length SNL1 was shown to repress transcription in a histone-deacetylase-dependent manner, demonstrating the conserved nature of SIN3 function. Yeast two-hybrid screening identified a number of DNA binding proteins each containing a single Myb domain that included the Arabidopsis ALWAYS EARLY proteins AtALY2 and AtALY3, and two telomere binding proteins AtTBP1 and AtTRP2/TRFL1 as SNL1 partners, suggesting potential functions for SNL1 in development and telomere maintenance. The interaction with telomere-binding protein 1 was found to be mediated through the well-defined paired amphipathic helix domain PAH2. In contrast, the AtALY2 interaction was mediated through the PAH3 domain of SNL1, which is structurally distinct from PAH1 and PAH2, suggesting that evolution of this domain to a more novel structural motif has occurred. These findings support a diverse role of SNL1 in the regulation of transcription and genome stability.
BMC Plant Biology | 2012
J. Peter Etchells; Lucy Moore; Wen Zhi Jiang; Helen Prescott; Richard G. Capper; Nigel J. Saunders; Anuj M. Bhatt; Hugh G. Dickinson
BackgroundHomeodomain transcription factors play critical roles in metazoan development. BELLRINGER (BLR), one such transcription factor, is involved in diverse developmental processes in Arabidopsis, acting in vascular differentiation, phyllotaxy, flower and fruit development. BLR also has a redundant role in meristem maintenance. Cell wall remodelling underpins many of these processes, and BLR has recently been shown to regulate expression of PECTIN METHYL-ESTERASE 5 (PME5), a cell wall modifying enzyme in control of phyllotaxy. We have further explored the role of BLR in plant development by analysing phenotypes and gene expression in a series of plants over-expressing BLR, and generating combinatorial mutants with blr, brevipedicellus (bp), a member of the KNOX1 family of transcription factors that has previously been shown to interact with blr, and the homeodomain transcription factor revoluta (rev), required for radial patterning of the stem.ResultsPlants over-expressing BLR exhibited a wide range of phenotypes. Some were defective in cell size and demonstrated misregulation of genes predominantly affecting cell wall development. Other lines with more extreme phenotypes failed to generate lateral organs, consistent with BLR repressing transcription in the shoot apex. Cell wall dynamics are also affected in blr mutant plants, and BLR has previously been shown to regulate vascular development in conjunction with BP. We found that when bp and blr were combined with rev, a set of defects was observed that were distinct from those of bp blr lines. In these triple mutants xylem development was most strikingly affected, resulting in an almost complete lack of vessels and xylem parenchyma with secondary thickening.ConclusionsOur data support a role for BLR in ordering the shoot apex and, in conjunction with BP and REV, playing a part in determining the composition and organisation of the vascular system. Microarray analysis strongly indicates that the striking vascular phenotypes of blr bp rev triple mutants and plants over-expressing BLR result from the misregulation of a suite of genes, targets of BLR in wild type plants, that determine cell size and structure in the developing vasculature.
Plant Journal | 1999
Anuj M. Bhatt; Clare Lister; Tania Page; Paul Fransz; Kim Findlay; G. H. Jones; Hugh G. Dickinson; Caroline Dean
Gene | 2004
Anuj M. Bhatt; J. Peter Etchells; Claudia Canales; Andrey Lagodienko; Hugh G. Dickinson
Plant Journal | 1996
Anuj M. Bhatt; Tania Page; Emily Lawson; Clare Lister; Caroline Dean
Journal of Experimental Botany | 2006
J. A. da Costa-Nunes; Anuj M. Bhatt; S. O'Shea; Christopher E. West; Clifford M. Bray; Ueli Grossniklaus; Hugh G. Dickinson