Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anup D. Sharma is active.

Publication


Featured researches published by Anup D. Sharma.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines

Surya K. Mallapragada; Timothy M. Brenza; JoEllyn McMillan; Balaji Narasimhan; Donald S. Sakaguchi; Anup D. Sharma; Svitlana Zbarska; Howard E. Gendelman

Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. From the clinical editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage. Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine delivery systems that would affect stem cell repair and regeneration in the nervous system.


Experimental Biology and Medicine | 2017

Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems:

Felipe T Lee-Montiel; Subin M. George; Albert Gough; Anup D. Sharma; Juanfang Wu; Richard DeBiasio; Lawrence Vernetti; D. Lansing Taylor

This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices.


Acta Biomaterialia | 2017

Development of multifunctional films for peripheral nerve regeneration.

Metin Uz; Anup D. Sharma; Pratish Adhikari; Donald S. Sakaguchi; Surya K. Mallapragada

In this study, a poly(lactic acid) (PLLA) porous film with longitudinal surface micropatterns was fabricated by a dry phase inversion technique to be used as potential conduit material for peripheral nerve regeneration applications. The presence of a nerve growth factor (NGF) gradient on the patterned film surface and protein loaded, surface-eroding, biodegradable, and amphiphilic polyanhydride (PA) microparticles within the film matrix, enabled co-delivery of neurotrophic factors with controlled release properties and enhanced neurite outgrowth from PC12 cells. The protein loading capacity of PA particles was increased up to 80% using the spray drying technique, while the surface loading of NGF reached 300ng/cm2 through ester-amine interactions. The NGF surface gradient provided initial fast release from the film surface and facilitated directional neurite outgrowth along with the longitudinal micropatterns. Furthermore, the variable backbone chemistry and surface eroding nature of protein-loaded PA microparticles within the film matrix ensured protein stability and enabled controlled protein release. This novel co-delivery strategy yielded tunable diffusion coefficients varying between 6×10-14 and 1.67×10-10cm2/min and dissolution constants ranging from 1×10-4 to 1×10-3min-1 with released amounts of ∼100-300ng/mL. This strategy promoted guided neurite extension from PC12 cells of up to 10μm total neurite length per cell in 2days. Overall, this unique strategy can potentially be extended for individually programmed delivery of multiple growth factors through the use of PA microparticle cocktails and can further be investigated for in vivo performance as potential conduit material for peripheral nerve regeneration applications. STATEMENT OF SIGNIFICANCE This manuscript focuses on the development of multifunctional degradable polymer films that provide topographic cues for guided growth, surface gradients of growth factors as well as nanoparticles in the films for tunable release of growth factors to enable peripheral nerve regeneration. The combination of cues was designed to overcome limitations of current strategies to facilitate peripheral nerve regeneration. These multifunctional films successfully provided high protein loading capacities while persevering activity, protein gradients on the surface, and tunable release of bioactive nerve growth factor that promoted directional and guided neurite extension of PC12 cells of up to 10μm in 2days. These multifunctional films can be made into conduits for peripheral nerve regeneration.


Nanomaterials in Tissue Engineering#R##N#Fabrication and Applications | 2013

Nanomaterials for neural tissue engineering

M.E. Marti; Anup D. Sharma; Donald S. Sakaguchi; Surya K. Mallapragada

Abstract: This chapter reviews the use of strategies combining nanotechnology with other guidance cues (e.g., biomaterials, support cells, chemical factors) in neural tissue engineering. Nano-structure fabrication techniques and various nanomaterials in neural tissue engineering are presented.


Acta Biomaterialia | 2017

Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes

Metin Uz; Melda Büyüköz; Anup D. Sharma; Donald S. Sakaguchi; Sacide Alsoy Altinkaya; Surya K. Mallapragada

In this study, gelatin-based 3D conduits with three different microstructures (nanofibrous, macroporous and ladder-like) were fabricated for the first time via combined molding and thermally induced phase separation (TIPS) technique for peripheral nerve regeneration. The effects of conduit microstructure and mechanical properties on the transdifferentiation of bone marrow-derived mesenchymal stem cells (MSCs) into Schwann cell (SC) like phenotypes were examined to help facilitate neuroregeneration and understand material-cell interfaces. Results indicated that 3D macroporous and ladder-like structures enhanced MSC attachment, proliferation and spreading, creating interconnected cellular networks with large numbers of viable cells compared to nanofibrous and 2D-tissue culture plate counterparts. 3D-ladder-like conduit structure with complex modulus of ∼0.4×106Pa and pore size of ∼150μm provided the most favorable microenvironment for MSC transdifferentiation leading to ∼85% immunolabeling of all SC markers. On the other hand, the macroporous conduits with complex modulus of ∼4×106Pa and pore size of ∼100μm showed slightly lower (∼65% for p75, ∼75% for S100 and ∼85% for S100β markers) immunolabeling. Transdifferentiated MSCs within 3D-ladder-like conduits secreted significant amounts (∼2.5pg/mL NGF and ∼0.7pg/mL GDNF per cell) of neurotrophic factors, while MSCs in macroporous conduits released slightly lower (∼1.5pg/mL NGF and 0.7pg/mL GDNF per cell) levels. PC12 cells displayed enhanced neurite outgrowth in media conditioned by conduits with transdifferentiated MSCs. Overall, conduits with macroporous and ladder-like 3D structures are promising platforms in transdifferentiation of MSCs for neuroregeneration and should be further tested in vivo. STATEMENT OF SIGNIFICANCE This manuscript focuses on the effect of microstructure and mechanical properties of gelatin-based 3D conduits on the transdifferentiation of mesenchymal stem cells to Schwann cell-like phenotypes. This work builds on our recently accepted manuscript in Acta Biomaterialia focused on multifunctional 2D films, and focuses on 3D microstructured conduits designed to overcome limitations of current strategies to facilitate peripheral nerve regeneration. The comparison between conduits fabricated with nanofibrous, macroporous and ladder-like microstructures showed that the ladder-like conduits showed the most favorable environment for MSC transdifferentiation to Schwann-cell like phenotypes, as seen by both immunolabeling as well as secretion of neurotrophic factors. This work demonstrates the importance of controlling the 3D microstructure to facilitate tissue engineering strategies involving stem cells that can serve as promising approaches for peripheral nerve regeneration.


Archive | 2016

Stem Cells, Bioengineering, and 3-D Scaffolds for Nervous System Repair and Regeneration

Elizabeth J. Sandquist; Metin Uz; Anup D. Sharma; Bhavika B. Patel; Surya K. Mallapragada; Donald S. Sakaguchi

Abstract:A fundamental issue in biology concerns how cells establish and maintain their identity during early embryogenesis. Gaining a better understanding of these rules is key to future development of experimental therapeutics and is an important foundation of tissue engineering and regenerative medicine. With the successful isolation of embryonic stem cells and the emergence of induced pluripotent stem cell technologies, it has become achievable to recapitulate developmental processes of early development. Furthermore, the advent of cellular reprogramming and transdifferentiation technologies has made it possible to implement rational strategies to generate specific cell types in order to model neurodegenerative diseases and develop cell-based therapies for nervous system disorders. Moreover, with advances in biomaterials and in 3-D scaffold fabrication techniques, it is becoming possible to mimic the neural stem cell niche. In this chapter, we provide an overview of approaches merging stem cells, polymeric scaffolds, drug delivery systems, gene therapy, cellular engineering, and biomaterials to develop experimental strategies for neural tissue engineering. Combined, these enabling technologies are likely to be beneficial for development of therapeutic interventions for translation to the clinic. A summary of a number of current clinical trials is also presented at the end to illustrate how combination of these technologies is helping nervous system rescue and repair.


Journal of Visualized Experiments | 2015

High Throughput Characterization of Adult Stem Cells Engineered for Delivery of Therapeutic Factors for Neuroprotective Strategies

Anup D. Sharma; Pavel A. Brodskiy; Emma M. Petersen; Melih Dagdeviren; Eun-Ah Ye; Surya K. Mallapragada; Donald S. Sakaguchi

Mesenchymal stem cells (MSCs) derived from bone marrow are a powerful cellular resource and have been used in numerous studies as potential candidates to develop strategies for treating a variety of diseases. The purpose of this study was to develop and characterize MSCs as cellular vehicles engineered for delivery of therapeutic factors as part of a neuroprotective strategy for rescuing the damaged or diseased nervous system. In this study we used mouse MSCs that were genetically modified using lentiviral vectors, which encoded brain-derived neurotrophic factor (BDNF) or glial cell-derived neurotrophic factor (GDNF), together with green fluorescent protein (GFP). Before proceeding with in vivo transplant studies it was important to characterize the engineered cells to determine whether or not the genetic modification altered aspects of normal cell behavior. Different culture substrates were examined for their ability to support cell adhesion, proliferation, survival, and cell migration of the four subpopulations of engineered MSCs. High content screening (HCS) was conducted and image analysis performed. Substrates examined included: poly-L-lysine, fibronectin, collagen type I, laminin, entactin-collagen IV-laminin (ECL). Ki67 immunolabeling was used to investigate cell proliferation and Propidium Iodide staining was used to investigate cell viability. Time-lapse imaging was conducted using a transmitted light/environmental chamber system on the high content screening system. Our results demonstrated that the different subpopulations of the genetically modified MSCs displayed similar behaviors that were in general comparable to that of the original, non-modified MSCs. The influence of different culture substrates on cell growth and cell migration was not dramatically different between groups comparing the different MSC subtypes, as well as culture substrates. This study provides an experimental strategy to rapidly characterize engineered stem cells and their behaviors before their application in long-term in vivo transplant studies for nervous system rescue and repair.


Journal of Proteomics | 2017

Proteomic analysis of mesenchymal to Schwann cell transdifferentiation

Anup D. Sharma; Jayme Wiederin; Metin Uz; Pawel Ciborowski; Surya K. Mallapragada; Howard E. Gendelman; Donald S. Sakaguchi

While transplantation of Schwann cells facilitates axon regeneration, remyelination and repair after peripheral nerve injury clinical use is limited by cell bioavailability. We posit that such limitation in cell access can be overcome by the use of autologous bone-marrow derived mesenchymal stem cells (MSCs). As MSCs can transdifferentiate to Schwann cell-phenotypes and accelerate nerve regeneration we undertook proteomic evaluation of the cells to uncover the protein contents that affects Schwann cell formulation. Transdifferentiated MSCs secrete significant amounts of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in cell-conditioned media that facilitated neurite outgrowth. MSC proteins significantly regulated during Schwann cell transdifferentiation included, but were not limited to, GNAI2, MYL9, ACTN4, ACTN1, ACTB, CAV-1, HSPB1, PHB2, TBB4B, CTGF, TGFI1, ARF6, EZR, GELS, VIM, WNT5A, RTN4, EFNB1. These support axonal guidance, myelination, neural development and neural growth and differentiation. The results unravel the molecular events that underlie cell transdifferentiation that ultimately serve to facilitate nerve regeneration and repair in support of cell transplantation. SIGNIFICANCE STATEMENT While Schwann cells facilitate axon regeneration, remyelination and repair after peripheral nerve injury clinical use is limited by cell bioavailability. We posit that such limitation in cell access can be overcome by the use of bone-marrow derived mesenchymal stem cells (MSCs) transdifferentiated to Schwann cell-phenotypes. In the present study, we undertook the first proteomic evaluation of these transdifferentiated cells to uncover the protein contents that affects Schwann cell formulation. Furthermore, these transdifferentiated MSCs secrete significant amounts of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in cell-conditioned media that facilitated neurite outgrowth. Our results demonstrate that a number of MSC proteins were significantly regulated following transdifferentiation of the MSCs supporting roles in axonal guidance, myelination, neural development and differentiation. The conclusions of the present work unravel the molecular events that underlie cell transdifferentiation that ultimately serve to facilitate nerve regeneration and repair in support of cell transplantation. Our study was the first proteomic comparison demonstrating the transdifferentiation of MSCs and these reported results can affect a wide field of stem cell biology, tissue engineering, and proteomics.


Journal of Bioscience and Bioengineering | 2016

Oriented growth and transdifferentiation of mesenchymal stem cells towards a Schwann cell fate on micropatterned substrates

Anup D. Sharma; Svitlana Zbarska; Emma M. Petersen; M.E. Marti; Surya K. Mallapragada; Donald S. Sakaguchi


Journal of Bioscience and Bioengineering | 2017

Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins

Metzere Bierlein De la Rosa; Anup D. Sharma; Surya K. Mallapragada; Donald S. Sakaguchi

Collaboration


Dive into the Anup D. Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Metin Uz

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Howard E. Gendelman

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Gough

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge