Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anup K. Singh is active.

Publication


Featured researches published by Anup K. Singh.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Microfluidic immunoassays as rapid saliva-based clinical diagnostics

Amy E. Herr; Anson V. Hatch; Daniel J. Throckmorton; Huu M. Tran; James S. Brennan; William V. Giannobile; Anup K. Singh

At present, point-of-care (POC) diagnostics typically provide a binary indication of health status (e.g., home pregnancy test strip). Before anticipatory use of diagnostics for assessment of complex diseases becomes widespread, development of sophisticated bioassays capable of quantitatively measuring disease biomarkers is necessary. Successful translation of new bioassays into clinical settings demands the ability to monitor both the onset and progression of disease. Here we report on a clinical POC diagnostic that enables rapid quantitation of an oral disease biomarker in human saliva by using a monolithic disposable cartridge designed to operate in a compact analytical instrument. Our microfluidic method facilitates hands-free saliva analysis by integrating sample pretreatment (filtering, enrichment, mixing) with electrophoretic immunoassays to quickly measure analyte concentrations in minimally pretreated saliva samples. Using 20 μl of saliva, we demonstrate rapid (<10 min) measurement of the collagen-cleaving enzyme matrix metalloproteinase-8 (MMP-8) in saliva from healthy and periodontally diseased subjects. In addition to physiologically measurable indicators of periodontal disease, conventional measurements of salivary MMP-8 were used to validate the microfluidic assays described in this proof-of-principle study. The microchip-based POC diagnostic demonstrated is applicable to rapid, reliable measurement of proteinaceous disease biomarkers in biological fluids.


Biosensors and Bioelectronics | 1999

Development of sensors for direct detection of organophosphates. Part I: Immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports.

Anup K. Singh; A.W Flounders; Joanne V. Volponi; C.S Ashley; Karl Wally; Joseph S. Schoeniger

Biosensors for organophosphates in solution may be constructed by monitoring the activity of acetylcholinesterase (AChE) or organophosphate hydrolase (OPH) immobilized to a variety of microsensor platforms. The area available for enzyme immobilization is small (< 1 mm2) for microsensors. In order to construct microsensors with increased surface area for enzyme immobilization, we used a sol-gel process to create highly porous and stable silica matrices. Surface porosity of sol-gel coated surfaces was characterized using scanning electron microscopy; pore structure was found to be very similar to that of commercially available porous silica supports. Based upon this analysis, porous and non-porous silica beads were used as model substrates of sol-gel coated and uncoated sensor surfaces. Two different covalent chemistries were used to immobilize AChE and OPH to these porous and non-porous silica beads. The first chemistry used amine-silanization of silica followed by enzyme attachment using the homobifunctional linker glutaraldehyde. The second chemistry used sulfhydryl-silanization followed by enzyme attachment using the heterobifunctional linker N-gamma-maleimidobutyryloxy succinimide ester (GMBS). Surfaces were characterized in terms of total enzyme immobilized, total and specific enzyme activity, and long term stability of enzyme activity. Amine derivitization followed by glutaraldehyde linking yielded supports with greater amounts of immobilized enzyme and activity. Use of porous supports not only yielded greater amounts of immobilized enzyme and activity, but also significantly improved long term stability of enzyme activity. Enzyme was also immobilized to sol-gel coated glass slides. The mass of immobilized enzyme increased linearly with thickness of coating. However, immobilized enzyme activity saturated at a porous silica thickness of approximately 800 nm.


Journal of Dental Research | 2011

Saliva/Pathogen Biomarker Signatures and Periodontal Disease Progression

Janet S. Kinney; Thiago Morelli; Thomas M. Braun; Christoph A. Ramseier; Amy E. Herr; Jim Sugai; Charles E. Shelburne; Lindsay A. Rayburn; Anup K. Singh; William V. Giannobile

The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 44 exhibiting PDP, while 39 demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 82% of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 78% of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0002). The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745).


Journal of Bacteriology | 2006

Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough

S. R. Chhabra; Qiang He; Katherine H. Huang; S. P. Gaucher; Eric Alm; Zhili He; M. Z. Hadi; Terry C. Hazen; Judy D. Wall; Jizhong Zhou; Adam P. Arkin; Anup K. Singh

Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organisms response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z >/= 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13 degrees C from a growth temperature of 37 degrees C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors sigma(32) and sigma(54). While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976) and also several periplasmic ABC transporters.


Current Opinion in Biotechnology | 2012

Single-cell protein analysis

Meiye Wu; Anup K. Singh

Heterogeneity of cellular systems has been widely recognized but only recently have tools become available that allow probing of genes and proteins in single cells to understand it. While the advancement in single cell genomic analysis has been greatly aided by the power of amplification techniques (e.g. PCR), analysis of proteins in single cells has proven to be more challenging. However, recent advances in multi-parameter flow cytometry, microscopy, microfluidics and other techniques have made it possible to measure wide variety of proteins in single cells. In this review, we highlight key recent developments in analysis of proteins in a single cell (excluding imaging-based methods), and discuss their significance in biological research.


Journal of Chromatography A | 2001

Reversed-phase electrochromatography of amino acids and peptides using porous polymer monoliths

Renée Shediac; Sarah M. Ngola; Daniel J. Throckmorton; Deon S Anex; Timothy J. Shepodd; Anup K. Singh

Efficient and rapid separation of minute levels of amino acids and bioactive peptides is of significant importance in the emerging field of proteomics as well as in the clinical and pharmaceutical arena. We have developed novel UV-initiated acrylate-based porous polymer monoliths as stationary phases for capillary- and chip-electrochromatography of cationic, anionic, and neutral amino acids and peptides, followed by absorbance or laser-induced fluorescence detection. The rigid monoliths are cast-to-shape and are tunable for charge and hydrophobicity. For separations at low pH, monoliths containing quaternary amine moieties were used to achieve high electroosmotic flow, and for high pH separations monoliths with acidic sulfonic acid groups were employed. Efficient and reproducible separations of phenylthiohydantoin-labeled amino acids, native peptides, and amino acids and peptides labeled with naphthalene-2,3-dicarboxaldehyde (NDA) were achieved using both negatively- and positively-charged polymer monoliths in capillaries. Separation efficiencies in the range of 65,000-371,000 plates/m were obtained with capillary electrochromatography. Buffer composition and the degree of column hydrophobicity were studied systematically to optimize separations. The monoliths were also cast in the microchannels of glass chips and electrochromatographic separation followed by laser-induced fluorescence detection of three NDA-labeled bioactive peptides was obtained.


Molecules | 2010

Supramolecular self-assembled chaos: polyphenolic lignin's barrier to cost-effective lignocellulosic biofuels

Komandoor E. Achyuthan; Ann Mary Achyuthan; Paul David Adams; Shawn Matthew Dirk; Jason C. Harper; Blake A. Simmons; Anup K. Singh

Phenylpropanoid metabolism yields a mixture of monolignols that undergo chaotic, non-enzymatic reactions such as free radical polymerization and spontaneous self-assembly in order to form the polyphenolic lignin which is a barrier to cost-effective lignocellulosic biofuels. Post-synthesis lignin integration into the plant cell wall is unclear, including how the hydrophobic lignin incorporates into the wall in an initially hydrophilic milieu. Self-assembly, self-organization and aggregation give rise to a complex, 3D network of lignin that displays randomly branched topology and fractal properties. Attempts at isolating lignin, analogous to archaeology, are instantly destructive and non-representative of in planta. Lack of plant ligninases or enzymes that hydrolyze specific bonds in lignin-carbohydrate complexes (LCCs) also frustrate a better grasp of lignin. Supramolecular self-assembly, nano-mechanical properties of lignin-lignin, lignin-polysaccharide interactions and association-dissociation kinetics affect biomass deconstruction and thereby cost-effective biofuels production.


Analytical Chemistry | 2008

Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces

Thomas D. Perroud; Julia N. Kaiser; Jay C. Sy; Todd W. Lane; Catherine Branda; Anup K. Singh; Kamlesh D. Patel

We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (microFACS) uses an infrared laser to laterally deflect cells into a collection channel. Green-labeled macrophages were sorted from a 40/60 ratio mixture at a throughput of 22 cells/s over 30 min achieving a 93% sorting purity and a 60% recovery yield. To rule out potential photoinduced cell damage during optical deflection, we investigated the response of mouse macrophage to brief exposures (<4 ms) of focused 1064-nm laser light (9.6 W at the sample). We found no significant difference in viability, cell proliferation, activation state, and functionality between infrared-exposed and unexposed cells. Activation state was measured by the phosphorylation of ERK and nuclear translocation of NF-kappaB, while functionality was assessed in a similar manner, but after a lipopolysaccharide challenge. To demonstrate the selective nature of optical sorting, we isolated a subpopulation of macrophages highly infected with the fluorescently labeled pathogen Francisella tularensis subsp. novicida. A total of 10,738 infected cells were sorted at a throughput of 11 cells/s with 93% purity and 39% recovery.


Biosensors and Bioelectronics | 1999

Development of sensors for direct detection of organophosphates. Part II : Sol-gel modified field effect transistor with immobilized organophosphate hydrolase

A.W Flounders; Anup K. Singh; Joanne V. Volponi; S.C Carichner; Karl Wally; A.S Simonian; James R. Wild; Joseph S. Schoeniger

Abstract pH-sensitive field effect transistors (FET) were modified with organophosphate hydrolase (OPH) and used for direct detection of organophosphate compounds. OPH is the organophosphate degrading gene product isolated from Pseudomonas diminuta . OPH was selected as an alternative to acetylcholinesterase, which requires inhibition mode sensor operation, enzyme regeneration before reuse, long sample incubation times, and a constant source of acetylcholine substrate. OPH was covalently immobilized directly to the exposed silicon nitride gate insulator of the FET. Alternatively, silica microspheres of 20 or 200 nm were formed via a base catalyzed sol–gel process and were dip-coated onto the gate surface; enzyme was then covalently immobilized to this modified surface. All sensors were tested with paraoxon and displayed rapid response ( −6 molar. The 200 nm sol–gel gate modification enhanced the signal of enzyme-modified devices without effecting device pH sensitivity. Sensors were stored at 4°C in buffer and tested multiple times. Devices coated with 200 nm silica microspheres maintained significant enzymatic activity over a period of 10 weeks while uncoated devices lost all enzyme activity during the same period. The 20 nm sol–gel modification did not enhance device response or enzyme stability. Successful reuse of sensor chips was demonstrated after stripping inactive enzyme with an RF oxygen plasma system and reimmobilizing active enzyme.


Fems Immunology and Medical Microbiology | 2011

Microbial diversity in saliva of oral squamous cell carcinoma

Smruti Pushalkar; Shrinivasrao P. Mane; Xiaojie Ji; Yihong Li; Clive Evans; Oswald Crasta; Douglas E. Morse; Robert J. Meagher; Anup K. Singh; Deepak Saxena

In the oral cavity, chronic inflammation has been observed at various stages of oral squamous cell carcinomas (OSCC). Such inflammation could result from persistent mucosal or epithelial cell colonization by microorganisms. There is increasing evidence of the involvement of oral bacteria in inflammation, warranting further studies on the association of bacteria with the progression of OSCC. The objective of this study was to evaluate the diversity and relative abundance of bacteria in the saliva of subjects with OSCC. Using 454 parallel DNA sequencing, ∼58,000 PCR amplicons that span the V4-V5 hypervariable region of rRNAs from five subjects were sequenced. Members of eight phyla (divisions) of bacteria were detected. The majority of classified sequences belonged to the phyla Firmicutes (45%) and Bacteroidetes (25%). Further, 52 different genera containing approximately 860 (16.51%) known species were identified and 1077 (67%) sequences belonging to various uncultured bacteria or unclassified groups. The species diversity estimates obtained with abundance-based coverage estimators and Chao1 were greater than published analyses of other microbial profiles from the oral cavity. Fifteen unique phylotypes were present in all three OSCC subjects.

Collaboration


Dive into the Anup K. Singh's collaboration.

Top Co-Authors

Avatar

Anson V. Hatch

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Adams

University of California

View shared research outputs
Top Co-Authors

Avatar

Blake A. Simmons

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gregory Jon Sommer

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Amy E. Herr

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert J. Meagher

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Perroud

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Yooli Kim Light

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Eric B. Cummings

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge