Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anup Roy is active.

Publication


Featured researches published by Anup Roy.


Molecular Cancer | 2008

Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: Pathological significance in early- and late-onset breast carcinoma

Satyabrata Sinha; Ratnesh Kumar Singh; Neyaz Alam; Anup Roy; Susanta Roychoudhury; Chinmay Kumar Panda

IntroductionYounger women with breast carcinoma (BC) exhibits more aggressive pathologic features compared to older women; young age could be an independent predictor of adverse prognosis. To find any existing differences in the molecular pathogenesis of BC in both younger and older women, alterations at chromosomal (chr.) 9q22.32-22.33 region were studied owing to its association in wide variety of tumors. Present work focuses on comparative analysis of alterations of four candidate genes; PHF2, FANCC, PTCH1 and XPA located within 4.4 Mb region of the afore-said locus in two age groups of BC, as well as the interrelation and prognostic significance of alterations of these genes.MethodsDeletion analysis of PHF2, FANCC, PTCH1 and XPA were examined in a subset of 47 early-onset (group-A: ≤ 40 years) and 59 late-onset (group-B: > 40 years) breast carcinomas using both microsatellite and exonic markers. Methylation Sensitive Restriction analysis (MSRA) was done to check for promoter methylation. Quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemisty (IHC) was done in some genes to see their relative mRNA and protein expressions respectively. Clinico-pathological correlation of different parameters as well as patient survival was calculated using different statistical softwares like EpiInfo 6.04b, SPSS 10.0 etc.ResultsEither age group exhibited high frequency of overall alterations in PHF2, FANCC and PTCH1 compared to XPA. Samples with alteration (deletion/methylation) in these genes showed reduced level of mRNA expression as seen by Q-PCR. Immunohistochemical analysis of FANCC and PTCH1 also supported this observation. Poor patient survival was noted in both age groups having alterations in FANCC. Similar result was also seen with PTCH1 and XPA alterations in group-A and PHF2 alterations in group-B. This reflected their roles as prognostic tools in the respective groups in which they were altered.ConclusionOverall alterations of PHF2, FANCC and PTCH1 were comparatively higher than XPA. Differential association of alterations in FANCC and PTCH1 with that of PHF2, XPA and two breast cancer susceptibility genes (BRCA1/BRCA2) in the two age groups suggests differences in their molecular pathogenesis and dysregulation of multiple DNA repair pathways as well as hedgehog dependent stem cell renewal pathway.


Cancer Science | 2010

Frequent alterations of the candidate genes hMLH1, ITGA9 and RBSP3 in early dysplastic lesions of head and neck: Clinical and prognostic significance

Amlan Ghosh; Susmita Ghosh; Guru Prasad Maiti; Mohammad Golam Sabbir; Eugene R. Zabarovsky; Anup Roy; Susanta Roychoudhury; Chinmay Kumar Panda

To understand the association between candidate tumor suppressor genes (TSGs) human mismatch repair protein homologue 1 (hMLH1), AP20 region gene 1 (APRG1), integrin α RLC (ITGA9), RB1 serine phosphates from human chromosome 3 (RBSP3) at chromosomal 3p22.3 region and development of head and neck squamous cell carcinoma (HNSCC), alterations (deletion/promoter methylation/expression) of these genes were analyzed in 65 dysplastic lesions and 84 HNSCC samples. Clinicopathological correlations were made with alterations of the genes. In HNSCC, deletion frequencies of hMLH1, ITGA9, and RBSP3 were comparatively higher than APRG1. Overall alterations (deletion/methylation) of hMLH1, ITGA9, and RBSP3 were high (45–55%) in mild dysplasia and comparable in subsequent stages of tumor progression. Quantitative RT‐PCR analysis showed reduced expression of these genes in tumors concordant to their molecular alterations. An in vitro demethylation experiment by 5‐aza‐2′‐deoxycytidine confirmed the promoter hypermethylation of RBSP3 in Hep2 and UPCI:SCC084 cell lines. Functionally less‐active RBSP3A isoform was predominant in tumor tissues contrary to the adjacent normal tissue of tumors where more active RBSP3B isoform was prevalent. In immunohistochemical analysis, intense nuclear staining of hMLH1 and pRB (phosphorylated RB, the substrate of RBSP3) proteins were seen in the basal layer of normal epithelium. In tumors, concordance was seen between (i) low/intermediate level of hMLH1 expression and its molecular alterations; and (ii) intense nuclear staining of pRB and RBSP3 alterations. Poor patient outcome was seen with hMLH1 and RBSP3 alterations. Moreover, in absence of human papilloma virus (HPV) infection, tobacco‐addicted patients with hMLH1, RBSP3 alterations, and nodal invasions showed poor prognosis. Thus our data suggests that dysregulation of hMLH1, ITGA9, and RBSP3 associated multiple cellular pathways are needed for the development of early dysplastic lesions of the head and neck. (Cancer Sci 2010)


International Journal of Cancer | 2008

Alterations of 3p21.31 Tumor Suppressor Genes in Head and Neck Squamous Cell Carcinoma: Correlation With Progression and Prognosis

Susmita Ghosh; Amlan Ghosh; Guru Prasad Maiti; Neyaz Alam; Anup Roy; Bidyut Roy; Susanta Roychoudhury; Chinmay Kumar Panda

The aim of our study was to analyze the alterations of some candidate tumor suppressor genes (TSGs) viz. LIMD1, LTF, CDC25A, SCOTIN, RASSF1A and CACNA2D2 located in the chromosomal region 3p21.31 associated with the development of early dysplastic lesions of head and neck. In analysis of 72 dysplastic lesions and 116 squamous cell carcinoma of head and neck, both deletion and promoter methylation have been seen in these genes except for CDC25A and SCOTIN where no methylation has been detected. The alteration of LIMD1 was highest (50%) in the mild dysplastic lesions and did not change significantly during progression of tumor indicating its association with this stage of the disease. It was evident that alterations of LTF, CDC25A and CACNA2D2 were associated with development of moderate dysplastic lesions, while alterations in RASSF1A and CACNA2D2 were needed for progression. Novel somatic mutations were seen in exon 1 of LIMD1 (7%), intron 3/exon4 splice junction of LTF (2%) and exon 7 of cdc25A (10%). Quantitative RT‐PCR analysis revealed mean reduced expression of the genes in the following order: LTF (67.6 ± 16.8) > LIMD1 (53.2 ± 20.1) > CACNA2D2 (23.7 ± 7.1) > RASSF1A (15.1 ± 5.6) > CDC25A (5.3 ± 2.3) > SCOTIN (0.58 ± 0.54). Immunohistochemical analysis of CDC25A showed its localization both in cytoplasm and nucleus in primary lesions and oral cancer cell lines. In absence of HPV infection, LTF and RASSF1A alterations jointly have adverse impact on survival of tobacco addicted patients. Thus, our data suggested that multiple candidate TSGs in the chromosomal 3p21.31 region were differentially associated with the early dysplastic lesions of head and neck.


Cancer | 2007

Inactivation of human MutL homolog 1 and MutS homolog 2 genes in head and neck squamous cell carcinoma tumors and leukoplakia samples by promoter hypermethylation and its relation with microsatellite instability phenotype

Shiladitya Sengupta; Susmita Chakrabarti; Anup Roy; Chinmay Kumar Panda; Susanta Roychoudhury

A subset of head and neck squamous cell carcinoma (HNSCC) exhibits a microsatellite instability (MIN) phenotype. The authors correlated alterations in the mismatch‐repair genes human mutL homolog 1 (hMLH1) and human mutS homolog 2 (hMSH2) in primary head and neck squamous cell carcinoma (HNSCC) tumors and in samples of leukoplakia with the MIN phenotype.


Journal of Clinical Pathology | 2006

Interplay between human papilloma virus infection and p53 gene alterations in head and neck squamous cell carcinoma of an Indian patient population

Sayan Mitra; Soma Banerjee; Chaitali Misra; Ratnesh Singh; Anup Roy; Arunava Sengupta; Chinmay Kumar Panda; Susanta Roychoudhury

Aim: To investigate the complex interplay between human papilloma virus (HPV) infection and p53 gene alteration in 92 head and neck squamous cell carcinoma (HNSCC) and 28 leukoplakia samples from eastern India. Methods: DNA isolated from the patient samples was subjected to HPV detection, loss of heterozygosity (LOH) analysis of the chromosome 17p region harbouring p53, genotyping at the p53 codon 72 locus and sequencing of the entire p53 gene to identify somatic mutations. Codon 72 heterozygotes carrying the p53 mutation were further cloned and resequenced to identify the allele harbouring the mutation. Results: HPV positivity in the HNSCC samples was 69%; 21% of the HNSCC were found to harbour p53 mutations in the coding region of the gene. The absence of the p53 mutation in HPV positive tumours was statistically significant compared to the HPV negative tumours (p = 0.01), but the same did not hold true for p53 LOH (p = 1.0). Among the germline p53 codon 72 heterozygotes, the Pro allele was preferentially lost (p = 0.02) while the Arg allele was mutated in the majority of cases. The risk of HPV mediated tumourigenesis increased with the increase in number of Arg alleles at the codon 72 locus. Conclusion: It is proposed that genetic and epigenetic alteration of p53 follow distinct pathways during the development of HNSCC from normal epithelium via dysplasia. The p53 mutation and HPV mediated p53 inactivation possibly constitute two independent pathways of tumourigenesis.


PLOS ONE | 2013

Overexpression of EGFR in Head and Neck Squamous Cell Carcinoma Is Associated with Inactivation of SH3GL2 and CDC25A Genes

Guru Prasad Maiti; Pinaki Mondal; Nupur Mukherjee; Amlan Ghosh; Susmita Ghosh; Sanjib Dey; Jayanta Chakrabarty; Anup Roy; Jaydip Biswas; Susanta Roychoudhury; Chinmay Kumar Panda

The aim of this study is to understand the mechanism of EGFR overexpression in head and neck squamous cell carcinoma (HNSCC). For this reason, expression/mutation of EGFR were analyzed in 30 dysplastic head and neck lesions and 148 HNSCC samples of Indian patients along with 3 HNSCC cell lines. In addition, deletion/methylation/mutation/expression of SH3GL2 (associated with EGFR degradation) and CDC25A (associated with dephosphorylation of EGFR) were analyzed in the same set of samples. Our study revealed high frequency of EGFR overexpression (66–84%), low frequency of gene amplification (10–32.5%) and absence of functional mutation in the dysplastic lesions and HNSCC samples. No correlation was found between protein overexpression and mRNA expression/gene amplification status of EGFR. On the other hand, frequent alterations (deletion/methylation) of SH3GL2 (63–77%) and CDC25A (37–64%) were seen in the dysplastic and HNSCC samples. Two novel single nucleotide polymorphism (SNPs) were found in the promoter region of SH3GL2. Reduced expression of these genes showed concordance with their alterations. Overexpression of EGFR and p-EGFR were significantly associated with reduced expression and alterations of SH3GL2 and CDC25A respectively. In-vitro demethylation experiment by 5-aza-2′-deoxycytidine (5-aza-dC) showed upregulation of SH3GL2 and CDC25A and downregulation of EGFR expression in Hep2 cell line. Poor patient outcome was predicted in the cases with alterations of SH3GL2 and CDC25A in presence of human papilloma virus (HPV) infection. Also, low SH3GL2 and high EGFR expression was a predictor of poor patient survival. Thus, our data suggests that overexpression of EGFR due to its reduced degradation and dephosphorylation is needed for development of HNSCC.


Journal of Nutritional Biochemistry | 2009

Tea polyphenols can restrict benzo[a]pyrene-induced lung carcinogenesis by altered expression of p53-associated genes and H-ras, c-myc and cyclin D1

Sugata Manna; Sudeshna Mukherjee; Anup Roy; Sukta Das; C K Panda

The modulatory influence of tea polyphenols (epigallocatechin gallate, epicatechin gallate and theaflavin) on benzo[a]pyrene (B[a]P)-induced lung carcinogenesis in mice was analyzed using histopathological and molecular parameters. Progression of lung lesions was restricted at the hyperplastic stage by tea polyphenols. A significant reduction in cellular proliferative index and an increase in apoptotic index were noted in the restricted lung lesions. High expression of H-ras, c-myc, cyclin D1 and p53 genes was seen at the inflammatory stage (9th week) and in subsequent premalignant lesions, but down-regulation of H-ras at the hyperplastic stage (17th week). Expression of bcl-2 was high in hyperplastic lesions, whereas the expression of mdm2 and bcl-xl increased only at the moderately dysplastic stage (36th week). The tea polyphenols inhibited inflammatory response in the lung lesions on the 9th week, when decreased expression of H-ras and c-myc and increased expression of bax were noted. Prolonged treatment (>9th week) with tea polyphenols resulted in changes in the expression of some additional genes, such as reduced expression of cyclin D1 (from the 17th week), bcl-2 (from the 26th week; mild dysplasia) and p21 (on the 36th week), and high expression of p53 (from the 17th week) and p27 (on the 36th week). These observations indicate that the tea polyphenols can restrict B[a]P-induced lung carcinogenesis by differential modulation of the expression of p53 and its associated genes such as bax, bcl-2, mdm2, p21 and p27, along with H-ras, c-myc and cyclin D1, at different time points.


Journal of Dermatological Science | 2010

Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: Downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway

Debolina Pal; Sarmistha Banerjee; Sudeshna Mukherjee; Anup Roy; Chinmay Kumar Panda; Sukta Das

BACKGROUND Eugenol is the active component of essential oil isolated from clove (Syzigium aromaticum). Eugenol has antimutagenic, antigenotoxic, anti-inflammatory properties. The anticarcinogenic effect of eugenol was evident in different types of cell lines. However, its anticarcinogenic effect in in vivo has not yet been fully explored. OBJECTIVE The aim of this study is to evaluate the chemopreventive potential of eugenol in an experimental skin carcinogenesis mice model system. METHOD Skin tumor was induced by topical application of DMBA croton oil in Swiss mice. To assess the chemopreventive potential of eugenol, it was orally administered 15 days prior carcinogen treatment. The development of skin carcinogenesis was confirmed by histopathological analysis. Cellular proliferation and apoptosis in the skin tumor were analyzed by in situ cellular proliferation and in situ cell death assay. Expression of some proliferation and apoptosis associated genes was analyzed by RT-PCR and protein expression was analyzed by Western blot. RESULTS Reduction in incidence and sizes of skin tumors along with overall increase in survival of mice were seen due to eugenol treatment. Restriction of skin carcinogenesis at the dysplastic stage along with reduced rate of cellular proliferation and increase in apoptosis were evident in eugenol treated skin tumors. Eugenol treatment led to the downregulation of c-Myc, H-ras and Bcl2 expression along with upregulation of P53, Bax and active Caspase-3 expression in the skin lesions. CONCLUSION Restriction of skin carcinogenesis at dysplastic stage by eugenol was due to attenuation of c-Myc, H-ras and modification of some p53 associated gene expression.


Carcinogenesis | 2012

Prevention of liver carcinogenesis by amarogentin through modulation of G1/S cell cycle check point and induction of apoptosis.

Debolina Pal; Subhayan Sur; Suvra Mandal; Ashes Das; Anup Roy; Sukta Das; Chinmay Kumar Panda

Amarogentin, a secoiridoid glycoside, is an active component of the medicinal plant Swertia chirata. In this study, chemopreventive and chemotherapeutic actions of amarogentin were evaluated in a carbon tetrachloride (CCl(4))/N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis mouse model system during continuous and posttreatment schedule. Better survival, no toxicity and increased body weight were noted in amarogentin-treated mice. Reduction in proliferation and increase in apoptosis frequency were evident in amarogentin-treated groups. In carcinogen control group moderate dysplasia, severe dysplasia and hepatocellular carcinoma were evident at 10th, 20th and 30th week, respectively. Amarogentin was found to prevent progression of liver carcinogenesis at mild dysplastic stage. Exposure to CCl(4)/NDEA resulted in upregulation of ppRb807/811, cyclinD1 and cdc25A at 10th week and additional activation of cMyc and mdm2 along with downregulation of LIMD1, p53 and p21 at 20th week. This was followed by activation of ppRb567 and downregulation of Rbsp3 at 30th week. Prevention of carcinogenesis by amarogentin in both groups might be due to cumulative upregulation of LIMD1, RBSP3, p16 and downregulation of cdc25A at 10th week along with activation of p53 and p21 and downregulation of ppRb807/811 and ppRb567 at 20th week, followed by downregulation of cyclinD1, cMyc and mdm2 at 30th week. During carcinogenesis reduction of apoptosis was evident since 20th week. However, amarogentin treatment could significantly induce apoptosis through upregulation of the Bax-Bcl2 ratio, activation of caspase-3 and poly ADP ribose polymerase cleavage. This is the first report of chemopreventive/therapeutic role of amarogentin during liver carcinogenesis through modulation of cell cycle and apoptosis.


Annals of Surgical Oncology | 2012

Association of FANCC and PTCH1 with the Development of Early Dysplastic Lesions of the Head and Neck

Amlan Ghosh; Susmita Ghosh; Guru Prasad Maiti; Sudeshna Mukherjee; Nupur Mukherjee; Jayanta Chakraborty; Anup Roy; Susanta Roychoudhury; C K Panda

BackgroundAlteration of chromosome 9q22.3 region is an early and frequent event in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to understand the association of candidate tumor suppressor genes PHF2, FANCC, PTCH1, and XPA located in this region in the development of HNSCC.MethodsThe alterations (deletion, promoter methylation, mutation, expression) of these genes were analyzed in 65 dysplastic head and neck lesions and 84 primary HNSCC samples. Clinicopathologic correlations were made with alterations of the genes.ResultsOverall alterations (deletion, promoter methylation) of FANCC and PTCH1 were high in mild dysplasia and comparable in subsequent stages of tumor progression. However, PHF2 alteration was low in mild dysplasia, but increased in moderate and severe dysplasias. Alterations (deletion, promoter methylation) of FANCC and PTCH1 showed association with each other. Two novel mutations in GLI binding sites of PTCH1 promoter and a novel microsatellite marker hmPTCH1 with four alleles at immediate upstream of the gene were identified. In a case-control study, the (CGG)7 allele of hmPTCH1 was found to be susceptible for HNSCC development. Concordance was seen in the expression (RNA, protein) of these genes with their molecular alterations.ConclusionsAlterations of FANCC and PTCH1 could be used as molecular marker for early diagnosis and prognosis of HNSCC.

Collaboration


Dive into the Anup Roy's collaboration.

Top Co-Authors

Avatar

Chinmay Kumar Panda

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Susanta Roychoudhury

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Neyaz Alam

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Nupur Mukherjee

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Guru Prasad Maiti

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Nilanjana Bhattacharya

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Amlan Ghosh

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Susmita Ghosh

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Anirban Roychowdhury

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Ratnesh Kumar Singh

Chittaranjan National Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge