Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anupam Pathak is active.

Publication


Featured researches published by Anupam Pathak.


Smart Materials and Structures | 2010

Transformation strain based method for characterization of convective heat transfer from shape memory alloy wires

Anupam Pathak; Diann Brei; Jonathan E. Luntz

While shape memory alloys (SMAs) have many actuation benefits, their frequencies are commonly restricted by slow cooling times caused by limitations in convective heat transfer. To increase the cooling speed and at the same time reduce excess power consumption from overheating, it is critical to understand the heat transfer from SMA wires. This requires accurate surface temperature measurement under a fixed input power, which is difficult to obtain using traditional methods because of the nature of SMAs (thin wires, large strains, heat activation, ambient environment, etc). This paper introduces a non-invasive technique for calculating the convective coefficient for SMAs by employing the temperature-induced transformation strain of SMAs to estimate the surface temperature. This method was experimentally validated for measurement of the convective coefficient in air where infrared cameras can operate, and then used to indirectly measure the convective coefficient across a range of commonly utilized SMA wire diameters and ambient media where traditional methods are limited. Formulated empirical correlations to the collected data provide a mathematical relationship to calculate the convective coefficient in material models which serve as better estimates of convection, and may be used for optimization of SMA actuators for increased frequency performance while ensuring that power draw is minimized.


The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2007

Design and quasi-static characterization of SMASH: SMA stabilizing handgrip

Anupam Pathak; Diann Brei; Jonathan E. Luntz; Chris LaVigna; Harry G. Kwatny

Due to physiologically induced body tremors, there is a need for active stabilization in many hand-held devices such as surgical tools, optical equipment (cameras), manufacturing tools, and small arms weapons. While active stabilization has been achieved with electromagnetic and piezoceramics actuators for cameras and surgical equipment, the hostile environment along with larger loads introduced by manufacturing and battlefield environments make these approaches unsuitable. Shape Memory Alloy (SMA) actuators are capable of alleviating these limitations with their large force/stroke generation, smaller size, lower weight, and increased ruggedness. This paper presents the actuator design and quasi-static characterization of a SMA Stabilizing Handgrip (SMASH). SMASH is an antagonistically SMA actuated two degree-of-freedom stabilizer for disturbances in the elevation and azimuth directions. The design of the SMASH for a given application is challenging because of the difficulty in accurately modeling systems loads such as friction and unknown shakedown SMA material behavior (which is dependent upon the system loads). Thus, an iterative empirical design process is introduced that provides a method to estimate system loads, a SMA shakedown procedure using the system loads to reduce material creep, and a final selection and prediction for the full SMASH system performance. As means to demonstrate this process, a SMASH was designed, built and experimentally characterized for the extreme case study of small arms stabilization for a US Army M16 rifle. This study successfully demonstrated the new SMASH technology along with the unique design procedure that can be applied to small arms along with a variety of other hand-held devices.


The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2008

Carbon nanotube (CNT) fins for enhanced cooling of shape memory alloy wire

Anupam Pathak; Joseph F. Aubuchon; Diann Brei; John A. Shaw; Jonathan E. Luntz; Sungho Jin

A commonly noted disadvantage of shape memory alloys is their frequency response which is limited by how fast the material can be cooled. This paper presents a feasibility study of using vertically aligned carbon nanotubes (CNT) as microscopic cooling fins to improve convective heat transfer. Using DC plasma enhanced chemical vapor deposition (PECVD), aligned CNTs were successfully grown directly on ½ of the surface of a 0.38 mm diameter SMA wire, achieving desirable thermal contact. Cooling speeds were measured with a thermal imaging camera, and the effective convective coefficient was extracted from the temperature profiles using a basic cooling model of the wire. From this model, the effective convective coefficient was estimated to have increased by 24% (from 50 W/m2K for untreated SMA wire to 62 W/m2K for the nanotube treated wire), indicating that the deposition of CNTs indeed increased performance. By extrapolating these results to full wire coverage, up to a 46% improvement in frequency response with zero weight or volumetric penalties is predicted. Further improvements in cooling performance are likely to occur with higher CNT densities and longer nanotube lengths, allowing further developments of this technology to benefit many future applications utilizing high-speed miniature/micro-scale SMA actuators.


The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2008

Dynamic characterization and single-frequency cancellation performance of SMASH (SMA actuated stabilizing handgrip)

Anupam Pathak; Diann Brei; Jonathan E. Luntz; Chris LaVigna; Harry G. Kwatny

In urban combat environments where it is common to have unsupported firing positions, wobble significantly decreases shooting accuracy reducing mission effectiveness and soldier survivability. The SMASH (SMA Stabilizing Handgrip) has been developed to cancel wobble using antagonistic SMA actuators which reduce weight and size relative to conventional actuation, but lead to interesting control challenges. This paper presents the specification and design of the SMA actuation system for the SMASH platform along with experimental validation of the actuation and cancellation authority on the benchtop and on an M16 platform. Analytical dynamic weapon models and shooter experiments were conducted to define actuation frequency and amplitude specifications. The SMASH, designed to meet these, was experimentally characterized from the bounding quasi-static case up to the 3 Hz range, successfully generating the ±2 mm amplitude requirement. To effectively cancel wobble it is critical to produce the proper output functional shape which is difficult for SMA due to inherent nonlinearities, hysteresis, etc. Three distinct electrical heating input functions (square, ramp, and preheat) were investigated to shape the actuator output to produce smooth sinusoidal motion. The effect of each of these functions on the cancellation response of the SMASH applied to the M16 platform was experimentally studied across the wobble range (1-3 Hz) demonstrating significant cancellation, between 50-97% depending on the smoothing function and frequency. These results demonstrate the feasibility of a hand-held wobble cancellation device providing an important foundation for future work in overall system optimization and the development of physically based feed-forward signals for closed-loop control.


Smart Structures and Materials 2006: Modeling, Signal Processing, and Control | 2006

A dynamic model for generating actuator specifications for small arms barrel active stabilization

Anupam Pathak; Diann Brei; Jonathan E. Luntz; Chris LaVigna

Due to stresses encountered in combat, it is known that soldier marksmanship noticeably decreases regardless of prior training. Active stabilization systems in small arms have potential to address this problem to increase soldier survivability and mission effectiveness. The key to success is proper actuator design, but this is highly dependent on proper specification which is challenging due to the human/weapon interaction. This paper presents a generic analytical dynamic model which is capable of defining the necessary actuation specifications for a wide range of small arms platforms. The model is unique because it captures the human interface--shoulder and arm--that introduces the jitter disturbance in addition to the geometry, inertial properties and active stabilization stiffness of the small arms platform. Because no data to date is available for actual shooter-induced disturbance in field conditions, a method is given using the model to back-solve from measured shooting range variability data the disturbance amplitude information relative to the input source (arm or shoulder). As examples of the applicability of the model to various small arms systems, two different weapon systems were investigated: the M24 sniper weapon and the M16 assault rifle. In both cases, model based simulations provided valuable insight into impact on the actuation specifications (force, displacement, phase, frequency) due to the interplay of the human-weapon-active stabilization interface including the effect of shooter-disturbance frequency, disturbance location (shoulder vs. arm), and system parameters (stiffness, barrel rotation).


Proceedings of SPIE | 2009

Design and Preliminary Testing of a Handheld Antagonistic SMA Actuator for Cancellation of Human Tremor

Anupam Pathak; Diann Brei; Jonathan E. Luntz

Essential Tremor is a debilitating disorder that in the US alone is estimated to affect up to ten million people. Unfortunately current treatments (i.e. drug therapy and surgical procedures), are limited in effectiveness and often pose a risk of adverse side-effects. In response to this problem, this paper describes an active cancellation device based on a hand-held Shape Memory Alloy (SMA) actuated stabilization platform. The assistive device is designed to hold and stabilize various objects (e.g. eating utensils, tools, pointing implements, etc.) by sensing the users tremor and moving the object in an opposite direction using SMA actuators configured in biologically inspired antagonistic pairs. To aid in the design, performance prediction and control of the device, a device model is described that accounts for the device kinematics, SMA thermo-mechanics, and the heat transfer resulting from electrical heating and convective cooling. The system of differential equations in this device model coupled with the controller gain can be utilized to design the operation given a frequency range and power requirement. To demonstrate this, a prototype was built and experimentally tested under external disturbances in the range of 1-5 Hz, resulting in amplitude reduction of up to 80%. The extent of cancellation measured for both single-frequencies and actual human tremor disturbances demonstrate the promise of this approach as a broadly used assistive device for the multitudes afflicted by tremor.


ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2008 | 2008

Transient Thermodynamic Modelling and Experimental Validation of an Antagonistic SMA Actuator

Anupam Pathak; Diann Brei; Jonathan E. Luntz

Modern developments in Shape Memory Alloys (SMA) has positioned the material as an attractive alternative actuation for high yield, low cost industries which stand to benefit from the materials simple form, light weight, and high energy densities. However, the speed and predictability still remain as a barrier to its acceptance and usage. The robotics community has shown promising results with antagonistic actuation architectures to increase the cyclic speed and produce controlled motions; however, such control-based approaches generally require sensing and feedback implementations and tuning that are undesirable for high production products. This paper presents a simple but effective physically-based thermodynamic model for generic antagonistic actuation architecture. The model is derived from three sets of equations: differential equations describing the thermomechanical phase transformation behavior of the material, compatibility equations specific to the antagonistic configuration relating stresses and strains in the two wires to each other, and heat transfer equations involving the thermal properties of both the environment and the wire material. This model takes into consideration several key-aspects of real devices such as the wires becoming slack or localalized boiling conditions. This model was experimentally validated and studied under a range of conditions including variations in driving frequency (0.3–10 Hz), duty cycle (10%–45%), amplitude (50%–100% transformation), and wire diameter (8–20 mil). The correlation over these widely varying conditions indicates the model’s accuracy and potential for use in the design process of future antagonistic actuators and their controllers for industrial applications.© 2008 ASME


Archive | 2010

TREMOR STABILIZING SYSTEM FOR HANDHELD DEVICES

Anupam Pathak; Jonathan E. Luntz; Diann Brei; Tian Shen; Sarah Napier; Rajiv Ghosh; Sei Jin Park


Archive | 2005

Stabilizing hand grip system

Christopher LaVigna; Diann Brei; Jonathan E. Luntz; Anupam Pathak


The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2008

Stabilizing shape memory alloy actuator performance through cyclic shakedown: An empirical study

Helen Sun; Anupam Pathak; Jonathan E. Luntz; Diann Brei; Paul W. Alexander; Nancy L. Johnson

Collaboration


Dive into the Anupam Pathak's collaboration.

Top Co-Authors

Avatar

Diann Brei

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Sun

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge