Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anuradha Chowdhary is active.

Publication


Featured researches published by Anuradha Chowdhary.


Clinical Microbiology and Infection | 2014

ESCMID and ECMM Joint Clinical Guidelines for the Diagnosis and Management of Mucormycosis 2013

Oliver A. Cornely; S. Arikan-Akdagli; Eric Dannaoui; Andreas H. Groll; Katrien Lagrou; Arunaloke Chakrabarti; Fanny Lanternier; Livio Pagano; Anna Skiada; Murat Akova; Maiken Cavling Arendrup; Teun Boekhout; Anuradha Chowdhary; Manuel Cuenca-Estrella; Tomáš Freiberger; Jesús Guinea; Josep Guarro; S. de Hoog; William W. Hope; Eric M. Johnson; Shallu Kathuria; Michaela Lackner; Cornelia Lass-Flörl; Olivier Lortholary; Jacques F. Meis; Joseph Meletiadis; Patricia Muñoz; Malcolm Richardson; Emmanuel Roilides; Anna Maria Tortorano

These European Society for Clinical Microbiology and Infectious Diseases and European Confederation of Medical Mycology Joint Clinical Guidelines focus on the diagnosis and management of mucormycosis. Only a few of the numerous recommendations can be summarized here. To diagnose mucormycosis, direct microscopy preferably using optical brighteners, histopathology and culture are strongly recommended. Pathogen identification to species level by molecular methods and susceptibility testing are strongly recommended to establish epidemiological knowledge. The recommendation for guiding treatment based on MICs is supported only marginally. Imaging is strongly recommended to determine the extent of disease. To differentiate mucormycosis from aspergillosis in haematological malignancy and stem cell transplantation recipients, identification of the reverse halo sign on computed tomography is advised with moderate strength. For adults and children we strongly recommend surgical debridement in addition to immediate first-line antifungal treatment with liposomal or lipid-complex amphotericin B with a minimum dose of 5 mg/kg/day. Amphotericin B deoxycholate is better avoided because of severe adverse effects. For salvage treatment we strongly recommend posaconazole 4×200 mg/day. Reversal of predisposing conditions is strongly recommended, i.e. using granulocyte colony-stimulating factor in haematological patients with ongoing neutropenia, controlling hyperglycaemia and ketoacidosis in diabetic patients, and limiting glucocorticosteroids to the minimum dose required. We recommend against using deferasirox in haematological patients outside clinical trials, and marginally support a recommendation for deferasirox in diabetic patients. Hyperbaric oxygen is supported with marginal strength only. Finally, we strongly recommend continuing treatment until complete response demonstrated on imaging and permanent reversal of predisposing factors.


Clinical Infectious Diseases | 2016

Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles?

Paul E. Verweij; Anuradha Chowdhary; Willem J. G. Melchers; Jacques F. Meis

Azole resistance in Aspergillus fumigatus has now been reported from 6 continents and is emerging as a global health problem. The epidemiology, spread of azole resistance, the clinical implications, and directions of research are highlighted.


Clinical Microbiology and Infection | 2014

ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others

Anna Maria Tortorano; Malcolm Richardson; Emmanuel Roilides; A.D. van Diepeningen; Morena Caira; Patricia Muñoz; Eric M. Johnson; Joseph Meletiadis; Zoi-Dorothea Pana; Michaela Lackner; Paul E. Verweij; Tomáš Freiberger; Oliver A. Cornely; S. Arikan-Akdagli; Eric Dannaoui; Andreas H. Groll; Katrien Lagrou; Arunaloke Chakrabarti; Fanny Lanternier; Livio Pagano; Anna Skiada; Murat Akova; Maiken Cavling Arendrup; Teun Boekhout; Anuradha Chowdhary; Manuel Cuenca-Estrella; J. Guinea; Josep Guarro; S. de Hoog; William W. Hope

Mycoses summarized in the hyalohyphomycosis group are heterogeneous, defined by the presence of hyaline (non-dematiaceous) hyphae. The number of organisms implicated in hyalohyphomycosis is increasing and the most clinically important species belong to the genera Fusarium, Scedosporium, Acremonium, Scopulariopsis, Purpureocillium and Paecilomyces. Severely immunocompromised patients are particularly vulnerable to infection, and clinical manifestations range from colonization to chronic localized lesions to acute invasive and/or disseminated diseases. Diagnosis usually requires isolation and identification of the infecting pathogen. A poor prognosis is associated with fusariosis and early therapy of localized disease is important to prevent progression to a more aggressive or disseminated infection. Therapy should include voriconazole and surgical debridement where possible or posaconazole as salvage treatment. Voriconazole represents the first-line treatment of infections due to members of the genus Scedosporium. For Acremonium spp., Scopulariopsis spp., Purpureocillium spp. and Paecilomyces spp. the optimal antifungal treatment has not been established. Management usually consists of surgery and antifungal treatment, depending on the clinical presentation.


Clinical Infectious Diseases | 2017

Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses

Shawn R. Lockhart; Kizee A. Etienne; Snigdha Vallabhaneni; Joveria Farooqi; Anuradha Chowdhary; Nelesh P. Govender; Arnaldo Lopes Colombo; Belinda Calvo; Christina A. Cuomo; Christopher A. Desjardins; Elizabeth L. Berkow; Mariana Castanheira; Rindidzani E. Magobo; Kauser Jabeen; Rana Jawad Asghar; Jacques F. Meis; Brendan R. Jackson; Tom Chiller; Anastasia P. Litvintseva

Background. Candida auris, a multidrug-resistant yeast that causes invasive infections, was first described in 2009 in Japan and has since been reported from several countries. Methods. To understand the global emergence and epidemiology of C. auris, we obtained isolates from 54 patients with C. auris infection from Pakistan, India, South Africa, and Venezuela during 2012–2015 and the type specimen from Japan. Patient information was available for 41 of the isolates. We conducted antifungal susceptibility testing and whole-genome sequencing (WGS). Results. Available clinical information revealed that 41% of patients had diabetes mellitus, 51% had undergone recent surgery, 73% had a central venous catheter, and 41% were receiving systemic antifungal therapy when C. auris was isolated. The median time from admission to infection was 19 days (interquartile range, 9–36 days), 61% of patients had bloodstream infection, and 59% died. Using stringent break points, 93% of isolates were resistant to fluconazole, 35% to amphotericin B, and 7% to echinocandins; 41% were resistant to 2 antifungal classes and 4% were resistant to 3 classes. WGS demonstrated that isolates were grouped into unique clades by geographic region. Clades were separated by thousands of single-nucleotide polymorphisms, but within each clade isolates were clonal. Different mutations in ERG11 were associated with azole resistance in each geographic clade. Conclusions. C. auris is an emerging healthcare-associated pathogen associated with high mortality. Treatment options are limited, due to antifungal resistance. WGS analysis suggests nearly simultaneous, and recent, independent emergence of different clonal populations on 3 continents. Risk factors and transmission mechanisms need to be elucidated to guide control measures.


PLOS Pathogens | 2013

Emergence of Azole-Resistant Aspergillus fumigatus Strains due to Agricultural Azole Use Creates an Increasing Threat to Human Health

Anuradha Chowdhary; Shallu Kathuria; Jianping Xu; Jacques F. Meis

Aspergillus fumigatus, a ubiquitously distributed opportunistic pathogen, is the global leading cause of aspergillosis and causes one of the highest numbers of deaths among patients with fungal infections [1]. Invasive aspergillosis is the most severe manifestation with an overall annual incidence up to 10% in immunosuppressed patients, whereas chronic pulmonary aspergillosis affects about 3 million, primarily immunocompetent, individuals each year [2]. Three triazole antifungals, namely itraconazole, voriconazole, and posaconazole, are recommended first-line drugs in the treatment and prophylaxis of aspergillosis [3]. However, azole resistance in A. fumigatus isolates is increasingly reported with variable prevalence in Europe, the United States, South America, China, Japan, Iran, and India [4]–[9]. For example, about 10% of strains of A. fumigatus from the Netherlands are itraconazole resistant, and in the United Kingdom, the frequency increased from 0%–5% during 2002–2004 to 17%–20% in 2007–2009 [10]–[13]. In the ARTEMIS global surveillance program involving 62 medical centers, 5.8% of A. fumigatus strains showed elevated MICs to one or more triazoles [5]. Similarly, the prospective SCARE (Surveillance Collaboration on Aspergillus Resistance in Europe) study involving 22 medical centers in 19 countries identified an overall prevalence of 3.4% azole resistance. Azole-resistant A. fumigatus (ARAF) ranged from 0% to 26% among the 22 centres and was detected in 11 (57.9%) of the 19 participating European countries [4 and P.E. Verweij, personal communication]. Interestingly, almost half (48.9%) of the ARAF isolates from the SCARE network in European countries were resistant to multiple azoles and harbored the TR34/L98H mutation in the cyp51A gene [4 and P.E. Verweij, personal communication]. Indeed, multi-azole resistance in A. fumigatus due to the TR34/L98H mutations has become an emerging problem in both Europe and Asia and has been associated with high rates of treatment failures [12]–[14]. Azole antifungal drugs inhibit the ergosterol biosynthesis pathway, specifically the cytochrome p450 sterol 14-α-demethylase encoded by the cyp51A gene, which leads to depletion of ergosterol and accumulation of toxic sterols. The majority of ARAF isolates contain alterations in the target enzyme and the mutated target showed reduced or no binding to the drugs [15]. While most mutations in ARAF isolates were single nucleotide substitutions in the target gene (cyp51A), mutations at other genes such as the cdr1B have also been reported. For example, in the United Kingdom the frequency of ARAF isolates without cyp51A mutations has been reported to be more than 50% [16].


Journal of Antimicrobial Chemotherapy | 2012

Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India

Anuradha Chowdhary; Shallu Kathuria; H. S. Randhawa; S.N. Gaur; Corné H. W. Klaassen; Jacques F. Meis

OBJECTIVES Azole resistance in Aspergillus fumigatus isolates impacts on the management of aspergillosis since azoles are primary agents used for prophylaxis and therapy. We report the emergence of resistance to triazoles in two A. fumigatus isolates from patients in Delhi, India. METHODS One hundred and three A. fumigatus isolates, collected from 85 patients suspected of bronchopulmonary aspergillosis during 2005-10, were investigated for susceptibility to itraconazole, voriconazole, posaconazole and isavuconazole. We undertook a mixed-format real-time PCR assay for the detection of mutations leading to triazole resistance in A. fumigatus. The resistant isolates were compared with 25 Dutch TR/L98H-positive isolates by microsatellite analysis. RESULTS Of the 103 A. fumigatus isolates tested, only 2 had high MIC values of itraconazole (>16 mg/L), voriconazole (2 mg/L), posaconazole (2 mg/L) and isavuconazole (8 mg/L). The resistant A. fumigatus isolates exhibited the TR/L98H genotype and showed identical patterns by microsatellite typing, but were different from 25 Dutch TR/L98H isolates. CONCLUSIONS We report for the first time from India the occurrence of TR/L98H mutations in the cyp51A gene (responsible for reduced azole susceptibility) in two A. fumigatus isolates from patients with chronic respiratory disease who had not previously been exposed to azoles. The presence of TR/L98H is consistent with a route of resistance development through exposure to azole compounds in the environment. Given the emergence of azole resistance in environmental strains, continued surveillance of resistance in clinical A. fumigatus strains is desirable for successful therapy of aspergillosis.


Antimicrobial Agents and Chemotherapy | 2012

Cryptococcus neoformans-Cryptococcus gattii Species Complex: An International Study of Wild-Type Susceptibility Endpoint Distributions and Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole and Voriconazole

Ana Espinel-Ingroff; A.I. Aller; Emilia Cantón; L.R. Castanon-Olivares; Anuradha Chowdhary; S. Cordoba; Manuel Cuenca-Estrella; A. W. Fothergill; J. Fuller; Nelesh P. Govender; Ferry Hagen; M.T. Illnait-Zaragozi; E. Johnson; Sarah Kidd; Cornelia Lass-Flörl; Shawn R. Lockhart; Marilena dos Anjos Martins; Jacques F. Meis; M.S. Melhem; Luis Ostrosky-Zeichner; Teresa Peláez; M. A. Pfaller; Wiley A. Schell; G. St-Germain; Luciana Trilles; John Turnidge

ABSTRACT Epidemiological cutoff values (ECVs) for the Cryptococcus neoformans-Cryptococcus gattii species complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to 5,733 CLSI MICs for C. neoformans (including isolates of molecular type VNI [MICs for 759 to 1,137 isolates] and VNII, VNIII, and VNIV [MICs for 24 to 57 isolates]) and 705 to 975 MICs for C. gattii (including 42 to 260 for VGI, VGII, VGIII, and VGIV isolates) were gathered in 15 to 24 laboratories (Europe, United States, Argentina, Australia, Brazil, Canada, Cuba, India, Mexico, and South Africa) and were aggregated for analysis. Additionally, 220 to 359 MICs measured using CLSI yeast nitrogen base (YNB) medium instead of CLSI RPMI medium for C. neoformans were evaluated. CLSI RPMI medium ECVs for distributions originating from at least three laboratories, which included ≥95% of the modeled WT population, were as follows: fluconazole, 8 μg/ml (VNI, C. gattii nontyped, VGI, VGIIa, and VGIII), 16 μg/ml (C. neoformans nontyped, VNIII, and VGIV), and 32 μg/ml (VGII); itraconazole, 0.25 μg/ml (VNI), 0.5 μg/ml (C. neoformans and C. gattii nontyped and VGI to VGIII), and 1 μg/ml (VGIV); posaconazole, 0.25 μg/ml (C. neoformans nontyped and VNI) and 0.5 μg/ml (C. gattii nontyped and VGI); and voriconazole, 0.12 μg/ml (VNIV), 0.25 μg/ml (C. neoformans and C. gattii nontyped, VNI, VNIII, VGII, and VGIIa,), and 0.5 μg/ml (VGI). The number of laboratories contributing data for other molecular types was too low to ascertain that the differences were due to factors other than assay variation. In the absence of clinical breakpoints, our ECVs may aid in the detection of isolates with acquired resistance mechanisms and should be listed in the revised CLSI M27-A3 and CLSI M27-S3 documents.


Drug Resistance Updates | 2015

International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus

Paul E. Verweij; Michelle Ananda-Rajah; David R. Andes; Maiken Cavling Arendrup; Roger J. M. Brüggemann; Anuradha Chowdhary; Oliver A. Cornely; David W. Denning; Andreas H. Groll; Koichi Izumikawa; Bart Jan Kullberg; Katrien Lagrou; Johan Maertens; Jacques F. Meis; Pippa Newton; Iain Page; Seyedmojtaba Seyedmousavi; Donald C. Sheppard; Claudio Viscoli; Adilia Warris; J. Peter Donnelly

An international expert panel was convened to deliberate the management of azole-resistant aspergillosis. In culture-positive cases, in vitro susceptibility testing should always be performed if antifungal therapy is intended. Different patterns of resistance are seen, with multi-azole and pan-azole resistance more common than resistance to a single triazole. In confirmed invasive pulmonary aspergillosis due to an azole-resistant Aspergillus, the experts recommended a switch from voriconazole to liposomal amphotericin B (L-AmB; Ambisome(®)). In regions with environmental resistance rates of ≥10%, a voriconazole-echinocandin combination or L-AmB were favoured as initial therapy. All experts recommended L-AmB as core therapy for central nervous system aspergillosis suspected to be due to an azole-resistant Aspergillus, and considered the addition of a second agent with the majority favouring flucytosine. Intravenous therapy with either micafungin or L-AmB given as either intermittent or continuous therapy was recommended for chronic pulmonary aspergillosis due to a pan-azole-resistant Aspergillus. Local and national surveillance with identification of clinical and environmental resistance patterns, rapid diagnostics, better quality clinical outcome data, and a greater understanding of the factors driving or minimising environmental resistance are areas where research is urgently needed, as well as the development of new oral agents outside the azole drug class.


Journal of Clinical Microbiology | 2015

Multidrug-Resistant Candida auris Misidentified as Candida haemulonii: Characterization by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and DNA Sequencing and Its Antifungal Susceptibility Profile Variability by Vitek 2, CLSI Broth Microdilution, and Etest Method

Shallu Kathuria; Pradeep Kumar Singh; Cheshta Sharma; Anupam Prakash; Aradhana Masih; Anil Kumar; Jacques F. Meis; Anuradha Chowdhary

ABSTRACT Candida auris is a multidrug-resistant yeast that causes a wide spectrum of infections, especially in intensive care settings. We investigated C. auris prevalence among 102 clinical isolates previously identified as Candida haemulonii or Candida famata by the Vitek 2 system. Internal transcribed spacer region (ITS) sequencing confirmed 88.2% of the isolates as C. auris, and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) easily separated all related species, viz., C. auris (n = 90), C. haemulonii (n = 6), C. haemulonii var. vulnera (n = 1), and Candida duobushaemulonii (n = 5). The in vitro antifungal susceptibility was determined using CLSI broth microdilution (CLSI-BMD), the Vitek 2 antifungal susceptibility test, and the Etest method. C. auris isolates revealed uniformly elevated fluconazole MICs (MIC50, 64 μg/ml), and an alarming percentage of isolates (37%) exhibited elevated caspofungin MICs by CLSI-BMD. Notably, 34% of C. auris isolates had coexisting elevated MICs (≥2 μg/ml) for both fluconazole and voriconazole, and 10% of the isolates had elevated coexisting MICs (≥2 μg/ml) to two additional azoles, i.e., posaconazole and isavuconazole. In contrast to reduced amphotericin B MICs by CLSI-BMD (MIC50, 1 μg/ml) for C. auris, elevated MICs were noted by Vitek 2 (MIC50, 8 μg/ml), which were statistically significant. Candida auris remains an unnoticed pathogen in routine microbiology laboratories, as 90% of the isolates characterized by commercial identification systems are misidentified as C. haemulonii. MALDI-TOF MS proved to be a more robust diagnostic technique for rapid identification of C. auris. Considering that misleading elevated MICs of amphotericin B by the Vitek AST-YS07 card may lead to the selection of inappropriate therapy, a cautionary approach is recommended for laboratories relying on commercial systems for identification and antifungal susceptibility testing of rare yeasts.


PLOS ONE | 2012

Clonal Expansion and Emergence of Environmental Multiple-Triazole-Resistant Aspergillus fumigatus Strains Carrying the TR34/L98H Mutations in the cyp51A Gene in India

Anuradha Chowdhary; Shallu Kathuria; Jianping Xu; Cheshta Sharma; Gandhi Sundar; Pradeep Kumar Singh; S.N. Gaur; Ferry Hagen; Corné H. W. Klaassen; Jacques F. Meis

Azole resistance is an emerging problem in Aspergillus which impacts the management of aspergillosis. Here in we report the emergence and clonal spread of resistance to triazoles in environmental Aspergillus fumigatus isolates in India. A total of 44 (7%) A. fumigatus isolates from 24 environmental samples were found to be triazole resistant. The isolation rate of resistant A. fumigatus was highest (33%) from soil of tea gardens followed by soil from flower pots of the hospital garden (20%), soil beneath cotton trees (20%), rice paddy fields (12.3%), air samples of hospital wards (7.6%) and from soil admixed with bird droppings (3.8%). These strains showed cross-resistance to voriconazole, posaconazole, itraconazole and to six triazole fungicides used extensively in agriculture. Our analyses identified that all triazole-resistant strains from India shared the same TR34/L98H mutation in the cyp51 gene. In contrast to the genetic uniformity of azole-resistant strains the azole-susceptible isolates from patients and environments in India were genetically very diverse. All nine loci were highly polymorphic in populations of azole-susceptible isolates from both clinical and environmental samples. Furthermore, all Indian environmental and clinical azole resistant isolates shared the same multilocus microsatellite genotype not found in any other analyzed samples, either from within India or from the Netherlands, France, Germany or China. Our population genetic analyses suggest that the Indian azole-resistant A. fumigatus genotype was likely an extremely adaptive recombinant progeny derived from a cross between an azole-resistant strain migrated from outside of India and a native azole-susceptible strain from within India, followed by mutation and then rapid dispersal through many parts of India. Our results are consistent with the hypothesis that exposure of A. fumigatus to azole fungicides in the environment causes cross-resistance to medical triazoles. The study emphasises the need of continued surveillance of resistance in environmental and clinical A. fumigatus strains.

Collaboration


Dive into the Anuradha Chowdhary's collaboration.

Top Co-Authors

Avatar

Jacques F. Meis

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Ferry Hagen

Centraalbureau voor Schimmelcultures

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Roy

University of Delhi

View shared research outputs
Researchain Logo
Decentralizing Knowledge