Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anuradha Doddaballapur is active.

Publication


Featured researches published by Anuradha Doddaballapur.


Circulation Research | 2014

Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth

Katharina Michalik; Xintian You; Yosif Manavski; Anuradha Doddaballapur; Martin Zörnig; Thomas Braun; David John; Yuliya Ponomareva; Wei Chen; Shizuka Uchida; Reinier A. Boon; Stefanie Dimmeler

Rationale: The human genome harbors a large number of sequences encoding for RNAs that are not translated but control cellular functions by distinct mechanisms. The expression and function of the longer transcripts namely the long noncoding RNAs in the vasculature are largely unknown. Objective: Here, we characterized the expression of long noncoding RNAs in human endothelial cells and elucidated the function of the highly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Methods and Results: Endothelial cells of different origin express relative high levels of the conserved long noncoding RNAs MALAT1, taurine upregulated gene 1 (TUG1), maternally expressed 3 (MEG3), linc00657, and linc00493. MALAT1 was significantly increased by hypoxia and controls a phenotypic switch in endothelial cells. Silencing of MALAT1 by small interfering RNAs or GapmeRs induced a promigratory response and increased basal sprouting and migration, whereas proliferation of endothelial cells was inhibited. When angiogenesis was further stimulated by vascular endothelial growth factor, MALAT1 small interfering RNAs induced discontinuous sprouts indicative of defective proliferation of stalk cells. In vivo studies confirmed that genetic ablation of MALAT1 inhibited proliferation of endothelial cells and reduced neonatal retina vascularization. Pharmacological inhibition of MALAT1 by GapmeRs reduced blood flow recovery and capillary density after hindlimb ischemia. Gene expression profiling followed by confirmatory quantitative reverse transcriptase-polymerase chain reaction demonstrated that silencing of MALAT1 impaired the expression of various cell cycle regulators. Conclusions: Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Laminar Shear Stress Inhibits Endothelial Cell Metabolism via KLF2-Mediated Repression of PFKFB3

Anuradha Doddaballapur; Katharina Michalik; Yosif Manavski; Tina Lucas; Riekelt H. Houtkooper; Xintian You; Wei Chen; Andreas M. Zeiher; Michael Potente; Stefanie Dimmeler; Reinier A. Boon

Objective— Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. Approach and Results— Here, we show that laminar flow exposure reduced glucose uptake and mitochondrial content in endothelium. Shear stress–mediated reduction of endothelial metabolism was reversed by silencing the flow-sensitive transcription factor Kruppel-like factor 2 (KLF2). Endothelial-specific deletion of KLF2 in mice induced glucose uptake in endothelial cells of perfused hearts. KLF2 overexpression recapitulates the inhibitory effects on endothelial glycolysis elicited by laminar flow, as measured by Seahorse flux analysis and glucose uptake measurements. RNA sequencing showed that shear stress reduced the expression of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3), phosphofructokinase-1, and hexokinase 2 in a KLF2-dependent manner. Moreover, KLF2 represses PFKFB3 promoter activity. PFKFB3 knockdown reduced glycolysis, and overexpression increased glycolysis and partially reversed the KLF2-mediated reduction in glycolysis. Furthermore, PFKFB3 overexpression reversed KLF2-mediated reduction in angiogenic sprouting and network formation. Conclusions— Our data demonstrate that shear stress–mediated repression of endothelial cell metabolism via KLF2 and PFKFB3 controls endothelial cell phenotype.Objective—Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. Approach and Results—Here, we show that laminar flow exposure reduced glucose uptake and mitochondrial content in endothelium. Shear stress–mediated reduction of endothelial metabolism was reversed by silencing the flow-sensitive transcription factor Krüppel-like factor 2 (KLF2). Endothelial-specific deletion of KLF2 in mice induced glucose uptake in endothelial cells of perfused hearts. KLF2 overexpression recapitulates the inhibitory effects on endothelial glycolysis elicited by laminar flow, as measured by Seahorse flux analysis and glucose uptake measurements. RNA sequencing showed that shear stress reduced the expression of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3), phosphofructokinase-1, and hexokinase 2 in a KLF2-dependent manner. Moreover, KLF2 represses PFKFB3 promoter activity. PFKFB3 knockdown reduced glycolysis, and overexpression increased glycolysis and partially reversed the KLF2-mediated reduction in glycolysis. Furthermore, PFKFB3 overexpression reversed KLF2-mediated reduction in angiogenic sprouting and network formation. Conclusions—Our data demonstrate that shear stress–mediated repression of endothelial cell metabolism via KLF2 and PFKFB3 controls endothelial cell phenotype.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Laminar Shear Stress Inhibits Endothelial Cell Metabolism via Krüppel-Like Factor 2–Mediated Repression of 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase-3

Anuradha Doddaballapur; Katharina Michalik; Yosif Manavski; Tina Lucas; Riekelt H. Houtkooper; Xintian You; Wei Chen; Andreas M. Zeiher; Michael Potente; Stefanie Dimmeler; Reinier A. Boon

Objective— Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. Approach and Results— Here, we show that laminar flow exposure reduced glucose uptake and mitochondrial content in endothelium. Shear stress–mediated reduction of endothelial metabolism was reversed by silencing the flow-sensitive transcription factor Kruppel-like factor 2 (KLF2). Endothelial-specific deletion of KLF2 in mice induced glucose uptake in endothelial cells of perfused hearts. KLF2 overexpression recapitulates the inhibitory effects on endothelial glycolysis elicited by laminar flow, as measured by Seahorse flux analysis and glucose uptake measurements. RNA sequencing showed that shear stress reduced the expression of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3), phosphofructokinase-1, and hexokinase 2 in a KLF2-dependent manner. Moreover, KLF2 represses PFKFB3 promoter activity. PFKFB3 knockdown reduced glycolysis, and overexpression increased glycolysis and partially reversed the KLF2-mediated reduction in glycolysis. Furthermore, PFKFB3 overexpression reversed KLF2-mediated reduction in angiogenic sprouting and network formation. Conclusions— Our data demonstrate that shear stress–mediated repression of endothelial cell metabolism via KLF2 and PFKFB3 controls endothelial cell phenotype.Objective—Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. Approach and Results—Here, we show that laminar flow exposure reduced glucose uptake and mitochondrial content in endothelium. Shear stress–mediated reduction of endothelial metabolism was reversed by silencing the flow-sensitive transcription factor Krüppel-like factor 2 (KLF2). Endothelial-specific deletion of KLF2 in mice induced glucose uptake in endothelial cells of perfused hearts. KLF2 overexpression recapitulates the inhibitory effects on endothelial glycolysis elicited by laminar flow, as measured by Seahorse flux analysis and glucose uptake measurements. RNA sequencing showed that shear stress reduced the expression of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3), phosphofructokinase-1, and hexokinase 2 in a KLF2-dependent manner. Moreover, KLF2 represses PFKFB3 promoter activity. PFKFB3 knockdown reduced glycolysis, and overexpression increased glycolysis and partially reversed the KLF2-mediated reduction in glycolysis. Furthermore, PFKFB3 overexpression reversed KLF2-mediated reduction in angiogenic sprouting and network formation. Conclusions—Our data demonstrate that shear stress–mediated repression of endothelial cell metabolism via KLF2 and PFKFB3 controls endothelial cell phenotype.


Journal of Molecular and Cellular Cardiology | 2015

MicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2

Shemsi Demolli; Carmen Doebele; Anuradha Doddaballapur; Victoria Lang; Beate Fisslthaler; Emmanouil Chavakis; Manlio Vinciguerra; Sergio Sciacca; Reinhard Henschler; Markus Hecker; Soniya Savant; Hellmut G. Augustin; David Kaluza; Stefanie Dimmeler; Reinier A. Boon

MicroRNAs are endogenously expressed small noncoding RNAs that regulate gene expression. Laminar blood flow induces atheroprotective gene expression in endothelial cells (ECs) in part by upregulating the transcription factor KLF2. Here, we identified KLF2- and flow-responsive miRs that affect gene expression in ECs. Bioinformatic assessment of mRNA expression patterns identified the miR-30-5p seed sequence to be highly enriched in mRNAs that are downregulated by KLF2. Indeed, KLF2 overexpression and shear stress stimulation in vitro and in vivo increased the expression of miR-30-5p family members. Furthermore, we identified angiopoietin 2 (Ang2) as a target of miR-30. MiR-30 overexpression reduces Ang2 levels, whereas miR-30 inhibition by LNA-antimiRs induces Ang2 expression. Consistently, miR-30 reduced basal and TNF-α-induced expression of the inflammatory cell–cell adhesion molecules E-selectin, ICAM1 and VCAM1, which was rescued by stimulation with exogenous Ang2. In summary, KLF2 and shear stress increase the expression of the miR-30-5p family which acts in an anti-inflammatory manner in ECs by impairing the expression of Ang2 and inflammatory cell–cell adhesion molecules. The upregulation of miR-30-5p family members may contribute to the atheroprotective effects of shear stress.


PLOS ONE | 2015

Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo

Ruud D. Fontijn; Oscar L. Volger; Tineke van der Pouw-Kraan; Anuradha Doddaballapur; Thomas A. Leyen; Reinier A. Boon; Anton J.G. Horrevoets

The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transmembrane pore aquaporin-1 (AQP1) and its regulation by atheroprotective KLF2 and atherogenic inflammatory stimuli. In silico analysis of gene expression profiles from studies that assessed the effects of KLF2 overexpression in vitro and atherosclerosis in vivo on endothelial cells, identifies AQP1 as KLF2 downstream gene with elevated expression in the plaque-free vessel wall. Biomechanical and pharmaceutical induction of KLF2 in vitro is accompanied by induction of AQP1. Chromosome immunoprecipitation (CHIP) confirms binding of KLF2 to the AQP1 promoter. Inflammatory stimulation of endothelial cells leads to repression of AQP1 transcription, which is restrained by KLF2 overexpression. Immunohistochemistry reveals expression of aquaporin-1 in non-activated endothelium overlying macrophage-poor intimae, irrespective whether these intimae are characterized as being plaque-free or as containing advanced plaque. We conclude that AQP1 expression is subject to KLF2-mediated positive regulation by atheroprotective shear stress and is downregulated under inflammatory conditions both in vitro and in vivo. Thus, endothelial expression of AQP1 characterizes the atheroprotected, non-inflamed vessel wall. Our data provide support for a continuous role of KLF2 in stabilizing the vessel wall via co-temporal expression of eNOS and AQP1 both preceding and during the pathogenesis of atherosclerosis.


Cardiovascular Research | 2017

Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D

Shemsi Demolli; Anuradha Doddaballapur; Kavi Devraj; Konstantin Stark; Yosif Manavski; Annekathrin Eckart; Christoph M. Zehendner; Tina Lucas; Thomas Korff; Markus Hecker; Steffen Massberg; Stefan Liebner; David Kaluza; Reinier A. Boon; Stefanie Dimmeler

Aims Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding RNAs, which post-transcriptionally control gene expression. The aim of the present study was to unveil the mechanism by which shear stress-regulated microRNAs contribute to vessel maturation. Methods and results Here, we show that laminar shear stress increased miR-27a and miR-27b expression in vitro and in ex vivo in mouse femoral artery explants. Overexpression of miR-27b in endothelial cells increased pericyte adhesion and pericyte recruitment in vitro. In vitro barrier function of endothelial-pericyte co-cultures was augmented by miR-27b overexpression, whereas inhibition of miR-27a/b reduced adhesion and pericyte coverage and decreased barrier functions. In vivo, pharmacological inhibition of miR-27a/b by locked nucleic acid antisense oligonucleotides significantly reduced pericyte coverage and increased water content in the murine uterus. MiR-27b overexpression repressed semaphorins (SEMA), which mediate repulsive signals, and the vessel destabilizing human but not mouse Angiopoietin-2 (Ang-2). Silencing of SEMA6A and SEMA6D rescued the reduced pericyte adhesion by miR-27 inhibition. Furthermore, inhibition of SEMA6D increased barrier function of an endothelial-pericyte co-culture in vitro. Conclusion The present study demonstrates for the first time that shear stress-regulated miR-27b promotes the interaction of endothelial cells with pericytes, partly by repressing SEMA6A and SEMA6D.Aims Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding RNAs, which post-transcriptionally control gene expression. The aim of the present study was to unveil the mechanism by which shear stress-regulated microRNAs contribute to vessel maturation. Methods and results Here, we show that laminar shear stress increased miR-27a and miR-27b expression in vitro and in ex vivo in mouse femoral artery explants. Overexpression of miR-27b in endothelial cells increased pericyte adhesion and pericyte recruitment in vitro . In vitro barrier function of endothelial-pericyte co-cultures was augmented by miR-27b overexpression, whereas inhibition of miR-27a/b reduced adhesion and pericyte coverage and decreased barrier functions. In vivo , pharmacological inhibition of miR-27a/b by locked nucleic acid antisense oligonucleotides significantly reduced pericyte coverage and increased water content in the murine uterus. MiR-27b overexpression repressed semaphorins (SEMA), which mediate repulsive signals, and the vessel destabilizing human but not mouse Angiopoietin-2 (Ang-2). Silencing of SEMA6A and SEMA6D rescued the reduced pericyte adhesion by miR-27 inhibition. Furthermore, inhibition of SEMA6D increased barrier function of an endothelial-pericyte co-culture in vitro . Conclusion The present study demonstrates for the first time that shear stress-regulated miR-27b promotes the interaction of endothelial cells with pericytes, partly by repressing SEMA6A and SEMA6D.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells

Jes Niels Boeckel; Anja Derlet; Simone F. Glaser; Annika Luczak; Tina Lucas; Andreas W. Heumüller; Marcus Krüger; Christoph M. Zehendner; David Kaluza; Anuradha Doddaballapur; Kisho Ohtani; Karine Tréguer; Stefanie Dimmeler

Objective— Jumonji C (JmjC) domain–containing proteins modify histone and nonhistone proteins thereby controlling cellular functions. However, the role of JmjC proteins in angiogenesis is largely unknown. Here, we characterize the expression of JmjC domain–containing proteins after inducing endothelial differentiation of murine embryonic stem cells and study the function of JmjC domain–only proteins in endothelial cell (EC) functions. Approach and Results— We identified a large number of JmjC domain–containing proteins regulated by endothelial differentiation of murine embryonic stem cells. Among the family of JmjC domain–only proteins, Jmjd8 was significantly upregulated on endothelial differentiation. Knockdown of Jmjd8 in ECs significantly decreased in vitro network formation and sprouting in the spheroid assay. JMJD8 is exclusively detectable in the cytoplasm, excluding a function as a histone-modifying enzyme. Mass spectrometry analysis revealed JMJD8-interacting proteins with known functions in cellular metabolism like pyruvate kinase M2. Accordingly, knockdown of pyruvate kinase M2 in human umbilical vein ECs decreased endothelial sprouting in the spheroid assay. Knockdown of JMJD8 caused a reduction of EC metabolism as measured by Seahorse Bioscience extracellular flux analysis. Conversely, overexpression of JMJD8 enhanced cellular oxygen consumption rate of ECs, reflecting an increased mitochondrial respiration. Conclusions— Jmjd8 is upregulated during endothelial differentiation and regulates endothelial sprouting and metabolism by interacting with pyruvate kinase M2.


Circulation | 2014

Abstract 16718: The Long Noncoding RNA H19 Controls Vascular Ageing and Inflammation

Patrick Hofmann; Katharina Michalik; Anuradha Doddaballapur; Stefanie Dimmeler; Reinier Boon


Cardiovascular Research | 2016

Endothelial cell adenosine deaminase acting on RNA-1 is critically involved in vascular development and homeostasis in vivo

F. F. Lunella; A. Gatsiou; P. Grote; C. Amrhein; Anuradha Doddaballapur; Thomas Braun; Andreas M. Zeiher; Stefanie Dimmeler; K. Stellos


Circulation | 2014

Abstract 18448: Laminar Flow and Klf2 Regulate the Paracrine Activity of Endothelial Cells by Modulating the Balance of Cxcr4 versus Cxcr7 Expression

Yosif Manavski; Anuradha Doddaballapur; Junhao Hu; Hellmut G. Augustin; Reinier Boon; Stefanie Dimmeler

Collaboration


Dive into the Anuradha Doddaballapur's collaboration.

Top Co-Authors

Avatar

Stefanie Dimmeler

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Reinier A. Boon

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Yosif Manavski

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Andreas M. Zeiher

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

David Kaluza

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Katharina Michalik

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Tina Lucas

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shemsi Demolli

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Markus Hecker

St Bartholomew's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge