Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anuradha Roy is active.

Publication


Featured researches published by Anuradha Roy.


Current Pharmaceutical Biotechnology | 2010

Open Access High Throughput Drug Discovery in the Public Domain: A Mount Everest in the Making

Anuradha Roy; Peter R. McDonald; Sitta Sittampalam; Rathnam Chaguturu

High throughput screening (HTS) facilitates screening large numbers of compounds against a biochemical target of interest using validated biological or biophysical assays. In recent years, a significant number of drugs in clinical trails originated from HTS campaigns, validating HTS as a bona fide mechanism for hit finding. In the current drug discovery landscape, the pharmaceutical industry is embracing open innovation strategies with academia to maximize their research capabilities and to feed their drug discovery pipeline. The goals of academic research have therefore expanded from target identification and validation to probe discovery, chemical genomics, and compound library screening. This trend is reflected in the emergence of HTS centers in the public domain over the past decade, ranging in size from modestly equipped academic screening centers to well endowed Molecular Libraries Probe Centers Network (MLPCN) centers funded by the NIH Roadmap initiative. These centers facilitate a comprehensive approach to probe discovery in academia and utilize both classical and cutting-edge assay technologies for executing primary and secondary screening campaigns. The various facets of academic HTS centers as well as their implications on technology transfer and drug discovery are discussed, and a roadmap for successful drug discovery in the public domain is presented. New lead discovery against therapeutic targets, especially those involving the rare and neglected diseases, is indeed a Mount Everestonian size task, and requires diligent implementation of pharmaceutical industrys best practices for a successful outcome.


Nature Cell Biology | 2016

DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway

Alejandro Parrales; Atul Ranjan; Swathi V. Iyer; Subhash Padhye; Scott Weir; Anuradha Roy; Tomoo Iwakuma

Stabilization of mutant p53 (mutp53) in tumours greatly contributes to malignant progression. However, little is known about the underlying mechanisms and therapeutic approaches to destabilize mutp53. Here, through high-throughput screening we identify statins, cholesterol-lowering drugs, as degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. Statins preferentially suppress mutp53-expressing cancer cell growth. Specific reduction of mevalonate-5-phosphate by statins or mevalonate kinase knockdown induces CHIP ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutp53 by impairing interaction of mutp53 with DNAJA1, a Hsp40 family member. Knockdown of DNAJA1 also induces CHIP-mediated mutp53 degradation, while its overexpression antagonizes statin-induced mutp53 degradation. Our study reveals that DNAJA1 controls the fate of misfolded mutp53, provides insights into potential strategies to deplete mutp53 through the mevalonate pathway–DNAJA1 axis, and highlights the significance of p53 status in impacting statins’ efficacy on cancer therapy.


Molecular Oncology | 2015

Natural product (−)-gossypol inhibits colon cancer cell growth by targeting RNA-binding protein Musashi-1

Lan Lan; Carl Appelman; Amber Smith; Jia Yu; Sarah Larsen; Rebecca T. Marquez; Hao Liu; Xiaoqing Wu; Philip Gao; Anuradha Roy; Asokan Anbanandam; Ragul Gowthaman; John Karanicolas; Roberto N. De Guzman; Steven A. Rogers; Jeffrey Aubé; Min Ji; Robert S. Cohen; Kristi L. Neufeld; Liang Xu

Musashi‐1 (MSI1) is an RNA‐binding protein that acts as a translation activator or repressor of target mRNAs. The best‐characterized MSI1 target is Numb mRNA, whose encoded protein negatively regulates Notch signaling. Additional MSI1 targets include the mRNAs for the tumor suppressor protein APC that regulates Wnt signaling and the cyclin‐dependent kinase inhibitor P21WAF−1. We hypothesized that increased expression of NUMB, P21 and APC, through inhibition of MSI1 RNA‐binding activity might be an effective way to simultaneously downregulate Wnt and Notch signaling, thus blocking the growth of a broad range of cancer cells. We used a fluorescence polarization assay to screen for small molecules that disrupt the binding of MSI1 to its consensus RNA binding site. One of the top hits was (−)‐gossypol (Ki = 476 ± 273 nM), a natural product from cottonseed, known to have potent anti‐tumor activity and which has recently completed Phase IIb clinical trials for prostate cancer. Surface plasmon resonance and nuclear magnetic resonance studies demonstrate a direct interaction of (−)‐gossypol with the RNA binding pocket of MSI1. We further showed that (−)‐gossypol reduces Notch/Wnt signaling in several colon cancer cell lines having high levels of MSI1, with reduced SURVIVIN expression and increased apoptosis/autophagy. Finally, we showed that orally administered (−)‐gossypol inhibits colon cancer growth in a mouse xenograft model. Our study identifies (−)‐gossypol as a potential small molecule inhibitor of MSI1‐RNA interaction, and suggests that inhibition of MSI1s RNA binding activity may be an effective anti‐cancer strategy.


PLOS ONE | 2014

A Cell-Based High-Throughput Screen for Novel Chemical Inducers of Fetal Hemoglobin for Treatment of Hemoglobinopathies

Kenneth R. Peterson; Flavia C Costa; Halyna Fedosyuk; Renee Neades; Allen M. Chazelle; Lesya Zelenchuk; Andrea H. Fonteles; Parmita Dalal; Anuradha Roy; Rathnam Chaguturu; Biaoru Li; Betty S. Pace

Decades of research have established that the most effective treatment for sickle cell disease (SCD) is increased fetal hemoglobin (HbF). Identification of a drug specific for inducing γ-globin expression in pediatric and adult patients, with minimal off-target effects, continues to be an elusive goal. One hurdle has been an assay amenable to a high-throughput screen (HTS) of chemicals that displays a robust γ-globin off-on switch to identify potential lead compounds. Assay systems developed in our labs to understand the mechanisms underlying the γ- to β-globin gene expression switch during development has allowed us to generate a cell-based assay that was adapted for a HTS of 121,035 compounds. Using chemical inducer of dimerization (CID)-dependent bone marrow cells (BMCs) derived from human γ-globin promoter-firefly luciferase β-globin promoter-Renilla luciferase β-globin yeast artificial chromosome (γ-luc β-luc β-YAC) transgenic mice, we were able to identify 232 lead chemical compounds that induced γ-globin 2-fold or higher, with minimal or no β-globin induction, minimal cytotoxicity and that did not directly influence the luciferase enzyme. Secondary assays in CID-dependent wild-type β-YAC BMCs and human primary erythroid progenitor cells confirmed the induction profiles of seven of the 232 hits that were cherry-picked for further analysis.


Journal of Biological Chemistry | 2016

Targeting a Novel RNA-Protein Interaction for Therapeutic Intervention of Hantavirus Disease

Nilshad N. Salim; Safder S. Ganaie; Anuradha Roy; Subbiah Jeeva; Mohammad A. Mir

An evolutionarily conserved sequence at the 5′ terminus of hantaviral genomic RNA plays an important role in viral transcription initiation and packaging of the viral genome into viral nucleocapsids. Interaction of viral nucleocapsid protein (N) with this conserved sequence facilitates mRNA translation by a unique N-mediated translation strategy. Whereas this evolutionarily conserved sequence facilitates virus replication with the assistance of N in eukaryotic hosts having multifaceted antiviral defense, we demonstrate its interaction with N presents a novel target for therapeutic intervention of hantavirus disease. Using a high throughput screening approach, we identified three lead inhibitors that bind and induce structural perturbations in N. The inhibitors interrupt N-RNA interaction and abrogate both viral genomic RNA synthesis and N-mediated translation strategy without affecting the canonical translation machinery of the host cell. The inhibitors are well tolerated by cells and inhibit hantavirus replication with the same potency as ribavarin, a commercially available antiviral. We report the identification of a unique chemical scaffold that disrupts a critical RNA-protein interaction in hantaviruses and holds promise for the development of the first anti-hantaviral therapeutic with broad spectrum antiviral activity.


Bioorganic & Medicinal Chemistry | 2014

Expanding the results of a high throughput screen against an isochorismate-pyruvate lyase to enzymes of a similar scaffold or mechanism

Kathleen M. Meneely; Qianyi Luo; Andrew P. Riley; Byron Taylor; Anuradha Roy; Ross L. Stein; Thomas E. Prisinzano; Audrey L. Lamb

Antibiotic resistance is a growing health concern, and new avenues of antimicrobial drug design are being actively sought. One suggested pathway to be targeted for inhibitor design is that of iron scavenging through siderophores. Here we present a high throughput screen to the isochorismate-pyruvate lyase of Pseudomonas aeruginosa, an enzyme required for the production of the siderophore pyochelin. Compounds identified in the screen are high nanomolar to low micromolar inhibitors of the enzyme and produce growth inhibition in PAO1 P. aeruginosa in the millimolar range under iron-limiting conditions. The identified compounds were also tested for enzymatic inhibition of Escherichia coli chorismate mutase, a protein of similar fold and similar chemistry, and of Yersinia enterocolitica salicylate synthase, a protein of differing fold but catalyzing the same lyase reaction. In both cases, subsets of the inhibitors from the screen were found to be inhibitory to enzymatic activity (mutase or synthase) in the micromolar range and capable of growth inhibition in their respective organisms (E. coli or Y. enterocolitica).


PLOS ONE | 2016

Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation

Kishore Polireddy; Ruochen Dong; Peter R. McDonald; Tao Wang; Brendan Luke; Ping Chen; Melinda Broward; Anuradha Roy; Qi Chen

Background Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs) that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS) assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT) in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition. Methods An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay. Results Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl) indoline (BSI, Compound #38) significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities. Conclusion This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be developed as anti-EMT and anti-CSC drug leads.


Pharmaceutical Research | 2013

Benzylmorpholine analogs as selective inhibitors of lung cytochrome P450 2A13 for the chemoprevention of lung cancer in tobacco users.

Linda C. Blake; Anuradha Roy; David Neul; Frank J. Schoenen; Jeffrey Aubé; Emily E. Scott

ABSTRACTPurpose4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer.MethodsTwenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is a major challenge in compound design.ResultsA key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6.ConclusionsTwo such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure.


The Open Conference Proceedings Journal | 2011

Recent Trends in Collaborative, Open Source Drug Discovery

Anuradha Roy; Peter R. McDonald; Rathnam Chaguturu

The pharmaceutical sector has traditionally played a predominant role in screening compounds against a molecular target and optimizing chemistry to develop drugs. The basic research studies in the academic sector have provided the pharmaceutical companies with many biological targets with potential impact on therapeutics. These well- defined contributions of the pharmaceutical and academic sectors in drug discovery field are being redefined to meet the fiscal and innovation challenges in the current drug discovery landscape. There is an increased capital and personnel investment in academia in the areas of highthroughput screening and technology transfer. The pharma has adopted an open innovation paradigm which seeks to complement internal intellect with external global talent and expertise, with the overall goal of expediting complex data interpretation and introduction of more effective and safe drugs. The pharma- academia sectors are collaborating on several mutually beneficial alliances and the changing landscape at pharma- academiainterface necessitates an urgent need for a better understanding of the role of academia in translational research and suitable technology transfer terms to sustain collaborative opportunities.The collaborative partnership between pharma and academia is expected to provide the required boost to identify novel targets and develop new and effective drugs.


Future Medicinal Chemistry | 2011

The University of Kansas High-Throughput Screening Laboratory. Part II: enabling collaborative drug-discovery partnerships through cutting-edge screening technology

Peter R. McDonald; Anuradha Roy; Rathnam Chaguturu

The University of Kansas High-Throughput Screening (KU HTS) core is a state-of-the-art drug-discovery facility with an entrepreneurial open-service policy, which provides centralized resources supporting public- and private-sector research initiatives. The KU HTS core was established in 2002 at the University of Kansas with support from an NIH grant and the state of Kansas. It collaborates with investigators from national and international academic, nonprofit and pharmaceutical organizations in executing HTS-ready assay development and screening of chemical libraries for target validation, probe selection, hit identification and lead optimization. This is part two of a contribution from the KU HTS laboratory.

Collaboration


Dive into the Anuradha Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Aubé

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Lan Lan

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

Liang Xu

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge