Anusch Taraz
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anusch Taraz.
Journal of Combinatorial Theory | 2003
Deryk Osthus; Hans Jürgen Prömel; Anusch Taraz
Let Pn be the set of labelled planar graphs with n vertices. Denise, Vasconcellos and Welsh proved that |Pn| ≤ n! (75.8)n+o(n) and Bender, Gao and Wormald proved that |Pn| ≥ n! (26.1)n+o(n). Gerke and McDiarmid proved that almost all graphs in Pn have at least 13/7n edges. In this paper, we show that |Pn| ≤ n! (37.3)n+o(n) and that almost all graphs in Pn have at most 2.56n edges. The proof relies on a result of Tutte on the number of plane triangulations, the above result of Bender, Gao and Wormald and the following result, which we also prove in this paper: every labelled planar graph G with n vertices and m edges is contained in at least e3(3n-m)/2 labelled triangulations on n vertices, where e is an absolute constant. In other words, the number of triangulations of a planar graph is exponential in the number of edges which are needed to triangulate it. We also show that this bound on the number of triangulations is essentially best possible.
Journal of Combinatorial Theory | 2005
Daniela Kühn; Deryk Osthus; Anusch Taraz
We prove sufficient and essentially necessary conditions in terms of the minimum degree for a graph to contain planar subgraphs with many edges. For example, for all positive γ every sufficiently large graph G with minimum degree at least (2/3+γ)|G| contains a triangulation as a spanning subgraph, whereas this need not be the case when the minimum degree is less than 2|G|/3.
Combinatorica | 2003
Deryk Osthus; Jürgen Prömel; Anusch Taraz
Denote by % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn % 2BKvginnfarmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy % 0Hgip5wzaebbnrfifHhDYfgasaacH8WjY-vipgYlH8Gipec8Eeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqai-hGuQ8kuc9pgc9q8qqaq-dir-f % 0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabmabaa % GcbaGaeK4eXt1aaeWaaeaacaGIUbGaaOilaiaakccacaGITbaacaGL % OaGaayzkaaaaaa!3F3E!
Theoretical Computer Science | 2006
Michael Behrisch; Anusch Taraz
Combinatorics, Probability & Computing | 1999
Vojtech Rödl; Andrzej Ruciński; Anusch Taraz
{\user1{\mathcal{T}}}{\left( {{\user2{n}}{\user2{, m}}} \right)}
SIAM Journal on Discrete Mathematics | 2008
Michael Behrisch; Anusch Taraz; Michael Ueckerdt
Discrete Mathematics | 2001
Hans Jürgen Prömel; Angelika Steger; Anusch Taraz
the class of all triangle-free graphs on n vertices and m edges. Our main result is the following sharp threshold, which answers the question for which densities a typical triangle-free graph is bipartite. Fix ε > 0 and let % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSn0BKvguHDwzZbqefeKCPfgBGuLBPn % 2BKvginnfarmqr1ngBPrgitLxBI9gBamXvP5wqSXMqHnxAJn0BKvgu % HDwzZbqegm0B1jxALjhiov2DaeHbuLwBLnhiov2DGi1BTfMBaebbnr % fifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9 % pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFv % e9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWG0bWa % aSbaaSqaaiaaiodaaeqaaOGaeyypa0JaamiDamaaBaaaleaacaaIZa % aabeaakmaabmaabaGaamOBaaGaayjkaiaawMcaamaalaaabaWaaOaa % aeaacaaIZaaaleqaaaGcbaGaaGinaaaacaWGUbWaaWbaaSqabeaaca % aIZaGaai4laiaaikdaaaGcdaGcaaqaaiGacYgacaGGVbGaai4zaiaa % yIW7caaMi8UaamOBaaWcbeaaaaa!5713!
Israel Journal of Mathematics | 2016
Julia Böttcher; Jan Hladký; Diana Piguet; Anusch Taraz
Combinatorica | 2007
Stefanie Gerke; Hans Jürgen Prömel; Thomas Schickinger; Angelika Steger; Anusch Taraz
t_{3} = t_{3} {\left( n \right)}\frac{{{\sqrt 3 }}} {4}n^{{3/2}} {\sqrt {\log {\kern 1pt} {\kern 1pt} n} }
symposium on theoretical aspects of computer science | 2003
Amin Coja-Oghlan; Anusch Taraz