Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anushya Muruganujan is active.

Publication


Featured researches published by Anushya Muruganujan.


Nature Protocols | 2013

Large-scale gene function analysis with the PANTHER classification system

Huaiyu Mi; Anushya Muruganujan; John T. Casagrande; Paul D. Thomas

The PANTHER (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs). Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways. The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests. It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. In the 2013 release of PANTHER (v.8.0), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the systems analytical capability. This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system.


Nucleic Acids Research | 2012

PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees

Huaiyu Mi; Anushya Muruganujan; Paul D. Thomas

The data and tools in PANTHER—a comprehensive, curated database of protein families, trees, subfamilies and functions available at http://pantherdb.org—have undergone continual, extensive improvement for over a decade. Here, we describe the current PANTHER process as a whole, as well as the website tools for analysis of user-uploaded data. The main goals of PANTHER remain essentially unchanged: the accurate inference (and practical application) of gene and protein function over large sequence databases, using phylogenetic trees to extrapolate from the relatively sparse experimental information from a few model organisms. Yet the focus of PANTHER has continually shifted toward more accurate and detailed representations of evolutionary events in gene family histories. The trees are now designed to represent gene family evolution, including inference of evolutionary events, such as speciation and gene duplication. Subfamilies are still curated and used to define HMMs, but gene ontology functional annotations can now be made at any node in the tree, and are designed to represent gain and loss of function by ancestral genes during evolution. Finally, PANTHER now includes stable database identifiers for inferred ancestral genes, which are used to associate inferred gene attributes with particular genes in the common ancestral genomes of extant species.


Nucleic Acids Research | 2004

The PANTHER database of protein families, subfamilies, functions and pathways

Huaiyu Mi; Betty Lazareva-Ulitsky; Rozina Loo; Anish Kejariwal; Jody Vandergriff; Steven Rabkin; Nan Guo; Anushya Muruganujan; Olivier Doremieux; Michael J. Campbell; Hiroaki Kitano; Paul D. Thomas

PANTHER is a large collection of protein families that have been subdivided into functionally related subfamilies, using human expertise. These subfamilies model the divergence of specific functions within protein families, allowing more accurate association with function (ontology terms and pathways), as well as inference of amino acids important for functional specificity. Hidden Markov models (HMMs) are built for each family and subfamily for classifying additional protein sequences. The latest version, 5.0, contains 6683 protein families, divided into 31 705 subfamilies, covering ∼90% of mammalian protein-coding genes. PANTHER 5.0 includes a number of significant improvements over previous versions, most notably (i) representation of pathways (primarily signaling pathways) and association with subfamilies and individual protein sequences; (ii) an improved methodology for defining the PANTHER families and subfamilies, and for building the HMMs; (iii) resources for scoring sequences against PANTHER HMMs both over the web and locally; and (iv) a number of new web resources to facilitate analysis of large gene lists, including data generated from high-throughput expression experiments. Efforts are underway to add PANTHER to the InterPro suite of databases, and to make PANTHER consistent with the PIRSF database. PANTHER is now publicly available without restriction at http://panther.appliedbiosystems.com.


Nucleic Acids Research | 2003

PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification

Paul D. Thomas; Anish Kejariwal; Michael J. Campbell; Huaiyu Mi; Karen Diemer; Nan Guo; Istvan Ladunga; Betty Ulitsky-Lazareva; Anushya Muruganujan; Steven Rabkin; Jody Vandergriff; Olivier Doremieux

The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.


Nucleic Acids Research | 2016

PANTHER version 10: expanded protein families and functions, and analysis tools

Huaiyu Mi; Sagar Poudel; Anushya Muruganujan; John T. Casagrande; Paul D. Thomas

PANTHER (Protein Analysis THrough Evolutionary Relationships, http://pantherdb.org) is a widely used online resource for comprehensive protein evolutionary and functional classification, and includes tools for large-scale biological data analysis. Recent development has been focused in three main areas: genome coverage, functional information (‘annotation’) coverage and accuracy, and improved genomic data analysis tools. The latest version of PANTHER, 10.0, includes almost 5000 new protein families (for a total of over 12 000 families), each with a reference phylogenetic tree including protein-coding genes from 104 fully sequenced genomes spanning all kingdoms of life. Phylogenetic trees now include inference of horizontal transfer events in addition to speciation and gene duplication events. Functional annotations are regularly updated using the models generated by the Gene Ontology Phylogenetic Annotation Project. For the data analysis tools, PANTHER has expanded the number of different ‘functional annotation sets’ available for functional enrichment testing, allowing analyses to access all Gene Ontology annotations—updated monthly from the Gene Ontology database—in addition to the annotations that have been inferred through evolutionary relationships. The Prowler (data browser) has been updated to enable users to more efficiently browse the entire database, and to create custom gene lists using the multiple axes of classification in PANTHER.


Nucleic Acids Research | 2017

PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements

Huaiyu Mi; Xiaosong Huang; Anushya Muruganujan; Haiming Tang; Caitlin Mills; Diane Kang; Paul D. Thomas

The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new ‘hierarchical view’ of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution.


Nucleic Acids Research | 2010

PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium

Huaiyu Mi; Qing Dong; Anushya Muruganujan; Pascale Gaudet; Suzanna E. Lewis; Paul D. Thomas

Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system for inferring the functions of genes based on their evolutionary relationships. Phylogenetic trees of gene families form the basis for PANTHER and these trees are annotated with ontology terms describing the evolution of gene function from ancestral to modern day genes. One of the main applications of PANTHER is in accurate prediction of the functions of uncharacterized genes, based on their evolutionary relationships to genes with functions known from experiment. The PANTHER website, freely available at http://www.pantherdb.org, also includes software tools for analyzing genomic data relative to known and inferred gene functions. Since 2007, there have been several new developments to PANTHER: (i) improved phylogenetic trees, explicitly representing speciation and gene duplication events, (ii) identification of gene orthologs, including least diverged orthologs (best one-to-one pairs), (iii) coverage of more genomes (48 genomes, up to 87% of genes in each genome; see http://www.pantherdb.org/panther/summaryStats.jsp), (iv) improved support for alternative database identifiers for genes, proteins and microarray probes and (v) adoption of the SBGN standard for display of biological pathways. In addition, PANTHER trees are being annotated with gene function as part of the Gene Ontology Reference Genome project, resulting in an increasing number of curated functional annotations.


Nucleic Acids Research | 2006

Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools

Paul D. Thomas; Anish Kejariwal; Nan Guo; Huaiyu Mi; Michael J. Campbell; Anushya Muruganujan; Betty Lazareva-Ulitsky

The vast amount of protein sequence data now available, together with accumulating experimental knowledge of protein function, enables modeling of protein sequence and function evolution. The PANTHER database was designed to model evolutionary sequence–function relationships on a large scale. There are a number of applications for these data, and we have implemented web services that address three of them. The first is a protein classification service. Proteins can be classified, using only their amino acid sequences, to evolutionary groups at both the family and subfamily levels. Specific subfamilies, and often families, are further classified when possible according to their functions, including molecular function and the biological processes and pathways they participate in. The second application, then, is an expression data analysis service, where functional classification information can help find biological patterns in the data obtained from genome-wide experiments. The third application is a coding single-nucleotide polymorphism scoring service. In this case, information about evolutionarily related proteins is used to assess the likelihood of a deleterious effect on protein function arising from a single substitution at a specific amino acid position in the protein. All three web services are available at .


Nucleic Acids Research | 2014

PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools

James Hu; Gavin Sherlock; Deborah A. Siegele; Suzanne A. Aleksander; Catherine A. Ball; Janos Demeter; Sushanth Gouni; Timothy A. Holland; Peter D. Karp; John E. Lewis; Nathan M. Liles; Brenley K. McIntosh; Huaiyu Mi; Anushya Muruganujan; Farrell Wymore; Paul D. Thomas

PortEco (http://porteco.org) aims to collect, curate and provide data and analysis tools to support basic biological research in Escherichia coli (and eventually other bacterial systems). PortEco is implemented as a ‘virtual’ model organism database that provides a single unified interface to the user, while integrating information from a variety of sources. The main focus of PortEco is to enable broad use of the growing number of high-throughput experiments available for E. coli, and to leverage community annotation through the EcoliWiki and GONUTS systems. Currently, PortEco includes curated data from hundreds of genome-wide RNA expression studies, from high-throughput phenotyping of single-gene knockouts under hundreds of annotated conditions, from chromatin immunoprecipitation experiments for tens of different DNA-binding factors and from ribosome profiling experiments that yield insights into protein expression. Conditions have been annotated with a consistent vocabulary, and data have been consistently normalized to enable users to find, compare and interpret relevant experiments. PortEco includes tools for data analysis, including clustering, enrichment analysis and exploration via genome browsers. PortEco search and data analysis tools are extensively linked to the curated gene, metabolic pathway and regulation content at its sister site, EcoCyc.


Bioinformatics | 2011

BioPAX support in CellDesigner

Huaiyu Mi; Anushya Muruganujan; Emek Demir; Yukiko Matsuoka; Akira Funahashi; Hiroaki Kitano; Paul D. Thomas

MOTIVATION BioPAX is a standard language for representing and exchanging models of biological processes at the molecular and cellular levels. It is widely used by different pathway databases and genomics data analysis software. Currently, the primary source of BioPAX data is direct exports from the curated pathway databases. It is still uncommon for wet-lab biologists to share and exchange pathway knowledge using BioPAX. Instead, pathways are usually represented as informal diagrams in the literature. In order to encourage formal representation of pathways, we describe a software package that allows users to create pathway diagrams using CellDesigner, a user-friendly graphical pathway-editing tool and save the pathway data in BioPAX Level 3 format. AVAILABILITY The plug-in is freely available and can be downloaded at ftp://ftp.pantherdb.org/CellDesigner/plugins/BioPAX/ CONTACT: [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Anushya Muruganujan's collaboration.

Top Co-Authors

Avatar

Huaiyu Mi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Paul D. Thomas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Istvan Ladunga

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge