Anuya Paranjape
Virginia Commonwealth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anuya Paranjape.
Journal of Immunology | 2016
Amina Abdul Qayum; Anuya Paranjape; Daniel Abebayehu; Elizabeth Motunrayo Kolawole; Tamara T. Haque; Jamie Josephine Avila McLeod; Andrew J. Spence; Heather L. Caslin; Marcela Taruselli; Alena P. Chumanevich; Bianca Baker; Carole A. Oskeritzian; John J. Ryan
IL-10 is an important regulatory cytokine that modulates a wide range of immune cells. Whereas it is best known for its ability to suppress immune responses, IL-10 has been found to be pathogenic in several human and animal studies of immune-mediated diseases. There is a considerable gap in our understanding of the molecular mechanisms behind the stimulatory effects of IL-10 during allergic inflammation. IL-10 treatment has been shown to suppress mast cell TNF production. In this study, we report that whereas TNF secretion was reduced, IL-10 surprisingly enhanced IgE-mediated protease and cytokine production both in vitro and in vivo. This stimulatory effect was consistent in mouse and human skin mast cells. IL-10 enhanced activation of the key FcεRI signaling proteins Stat5, JNK, and ERK. We demonstrate that IL-10 effects are dependent on Stat3 activation, eliciting miR-155 expression, with a resulting loss of suppressor of cytokine signaling-1. The importance of miR-155 was demonstrated by the inability of IL-10 to enhance anaphylaxis in miR-155–deficient mice. Taken together, our results reveal an IL-10–induced, Stat3–miR-155 signaling pathway that can promote mast cell responses.
Journal of Immunology | 2017
Victor Ndaw; Daniel Abebayehu; Andrew J. Spence; Patrick A Paez; E. Motunrayo Kolawole; Marcela Taruselli; Heather L. Caslin; Alena P. Chumanevich; Anuya Paranjape; Bianca Baker; Brian Barnstein; Tamara T. Haque; Kasalina N. Kiwanuka; Carole A. Oskeritzian; John J. Ryan
TGF-β1 is involved in many pathological conditions, including autoimmune disorders, cancer, and cardiovascular and allergic diseases. We have previously found that TGF-β1 can suppress IgE-mediated mast cell activation of human and mouse mast cells. IL-33 is a member of the IL-1 family capable of inducing mast cell responses and enhancing IgE-mediated activation. In this study, we investigated the effects of TGF-β on IL-33–mediated mast cell activation. Bone marrow–derived mast cells cultured in TGF-β1, β2, or β3 showed reduced IL-33–mediated production of TNF, IL-6, IL-13, and MCP-1 in a concentration-dependent manner. TGF-β1 inhibited IL-33–mediated Akt and ERK phosphorylation as well as NF-κB– and AP-1–mediated transcription. These effects were functionally important, as TGF-β1 injection suppressed IL-33–induced systemic cytokines in vivo and inhibited IL-33–mediated cytokine release from human mast cells. TGF-β1 also suppressed the combined effects of IL-33 and IgE-mediated activation on mouse and human mast cells. The role of IL-33 in the pathogenesis of allergic diseases is incompletely understood. These findings, consistent with our previously reported effects of TGF-β1 on IgE-mediated activation, demonstrate that TGF-β1 can provide broad inhibitory signals to activated mast cells.
Journal of Immunology | 2016
Elizabeth Motunrayo Kolawole; Jamie Josephine Avila McLeod; Victor Ndaw; Daniel Abebayehu; Brian Barnstein; Travis Faber; Andrew J. Spence; Marcela Taruselli; Anuya Paranjape; Tamara T. Haque; Amina Abdul Qayum; Qasim A. Kazmi; Dayanjan S. Wijesinghe; Jamie Sturgill; Charles E. Chalfant; David B. Straus; Carole A. Oskeritzian; John J. Ryan
Mast cell (MC)– and basophil-associated inflammatory diseases are a considerable burden to society. A significant portion of patients have symptoms despite standard-of-care therapy. Statins, used to lower serum cholesterol, have immune-modulating activities. We tested the in vitro and in vivo effects of statins on IgE-mediated MC and basophil activation. Fluvastatin showed the most significant inhibitory effects of the six statins tested, suppressing IgE-induced cytokine secretion among mouse MCs and basophils. The effects of fluvastatin were reversed by mevalonic acid or geranylgeranyl pyrophosphatase, and mimicked by geranylgeranyl transferase inhibition. Fluvastatin selectively suppressed key FcεRI signaling pathways, including Akt and ERK. Although MCs and basophils from the C57BL/6J mouse strain were responsive to fluvastatin, those from 129/SvImJ mice were completely resistant. Resistance correlated with fluvastatin-induced upregulation of the statin target HMG-CoA reductase. Human MC cultures from eight donors showed a wide range of fluvastatin responsiveness. These data demonstrate that fluvastatin is a potent suppressor of IgE-mediated MC activation, acting at least partly via blockade of geranyl lipid production downstream of HMG-CoA reductase. Importantly, consideration of statin use for treating MC–associated disease needs to incorporate genetic background effects, which can yield drug resistance.
Journal of Leukocyte Biology | 2016
Anuya Paranjape; Oksana Chernushevich; Amina Abdul Qayum; Andrew J. Spence; Marcela Taruselli; Daniel Abebayehu; Brian Barnstein; Jamie Josephine Avila McLeod; Bianca Baker; Gurjas S. Bajaj; Alena P. Chumanevich; Carole A. Oskeritzian; John J. Ryan
Mast cells are critical effectors of allergic disease and can be activated by IL‐33, a proinflammatory member of the IL‐1 cytokine family. IL‐33 worsens the pathology of mast cell–mediated diseases, but therapies to antagonize IL‐33 are still forthcoming. Because steroids are the mainstay of allergic disease treatment and are well known to suppress mast cell activation by other stimuli, we examined the effects of the steroid dexamethasone on IL‐33‐mediated mast cell function. We found that dexamethasone potently and rapidly suppressed cytokine production elicited by IL‐33 from murine bone marrow–derived and peritoneal mast cells. IL‐33 enhances IgE‐mediated mast cell cytokine production, an activity that was also antagonized by dexamethasone. These effects were consistent in human mast cells. We additionally observed that IL‐33 augmented migration of IgE‐sensitized mast cells toward antigen. This enhancing effect was similarly reversed by dexamethasone. Simultaneous addition of dexamethasone with IL‐33 had no effect on the phosphorylation of MAP kinases or NFκB p65 subunit; however, dexamethasone antagonized AP‐1‐ and NFκB‐mediated transcriptional activity. Intraperitoneal administration of dexamethasone completely abrogated IL‐33‐mediated peritoneal neutrophil recruitment and prevented plasma IL‐6 elevation. These data demonstrate that steroid therapy may be an effective means of antagonizing the effects of IL‐33 on mast cells in vitro and in vivo, acting partly by suppressing IL‐33‐induced NFκB and AP‐1 activity.
Journal of Immunology | 2016
Daniel Abebayehu; Andrew J. Spence; Amina Abdul Qayum; Marcela Taruselli; Jamie Josephine Avila McLeod; Heather L. Caslin; Alena P. Chumanevich; Elizabeth Motunrayo Kolawole; Anuya Paranjape; Bianca Baker; Victor Ndaw; Brian Barnstein; Carole A. Oskeritzian; Scott A. Sell; John J. Ryan
Lactic acid (LA) is present in tumors, asthma, and wound healing, environments with elevated IL-33 and mast cell infiltration. Although IL-33 is a potent mast cell activator, how LA affects IL-33–mediated mast cell function is unknown. To investigate this, mouse bone marrow–derived mast cells were cultured with or without LA and activated with IL-33. LA reduced IL-33–mediated cytokine and chemokine production. Using inhibitors for monocarboxylate transporters (MCT) or replacing LA with sodium lactate revealed that LA effects are MCT-1– and pH-dependent. LA selectively altered IL-33 signaling, suppressing TGF-β–activated kinase-1, JNK, ERK, and NF-κB phosphorylation, but not p38 phosphorylation. LA effects in other contexts have been linked to hypoxia-inducible factor (HIF)-1α, which was enhanced in bone marrow–derived mast cells treated with LA. Because HIF-1α has been shown to regulate the microRNA miR-155 in other systems, LA effects on miR-155-5p and miR-155-3p species were measured. In fact, LA selectively suppressed miR-155-5p in an HIF-1α–dependent manner. Moreover, overexpressing miR-155-5p, but not miR-155-3p, abolished LA effects on IL-33–induced cytokine production. These in vitro effects of reducing cytokines were consistent in vivo, because LA injected i.p. into C57BL/6 mice suppressed IL-33–induced plasma cytokine levels. Lastly, IL-33 effects on primary human mast cells were suppressed by LA in an MCT-dependent manner. Our data demonstrate that LA, present in inflammatory and malignant microenvironments, can alter mast cell behavior to suppress inflammation.
Cellular Immunology | 2017
Heather L. Caslin; Jamie Josephine Avila McLeod; Andrew J. Spence; Amina Abdul Qayum; Elizabeth Motunrayo Kolawole; Marcela Taruselli; Anuya Paranjape; Howard L. Elford; John J. Ryan
While IgE is considered the primary mediator of mast cell activation, IL-33 contributes substantially in asthma, allergic rhinitis, and atopic dermatitis. To develop effective treatments for allergic disease, it is important to understand the role of therapeutic agents on IL-33 activation. We examined the effect of Didox (3,4-dihydroxybenzohydroxamic acid), an antioxidant and ribonucleotide reductase (RNR) inhibitor, on IL-33-mediated mast cell activation. Didox suppressed IL-6, IL-13, TNF, and MIP-1α (CCL3) production in bone marrow derived mast cells following IL-33 activation. This suppression was observed in different genetic backgrounds and extended to peritoneal mast cells. The antioxidant N-acetylcysteine mimicked the suppression of Didox, albeit at a much higher dose, while the RNR inhibitor hydroxyurea had no effect. Didox substantially suppressed IL-33-mediated NFκB and AP-1 transcriptional activities. These results suggest that Didox attenuates IL-33-induced mast cell activation and should be further studied as a potential therapeutic agent for inflammatory diseases involving IL-33.
Frontiers in Immunology | 2018
Heather L. Caslin; Kasalina N. Kiwanuka; Tamara T. Haque; Marcela Taruselli; H. Patrick MacKnight; Anuya Paranjape; John J. Ryan
Mast cells are tissue resident, innate immune cells with heterogenous phenotypes tuned by cytokines and other microenvironmental stimuli. Playing a protective role in parasitic, bacterial, and viral infections, mast cells are also known for their role in the pathogenesis of allergy, asthma, and autoimmune diseases. Here, we review factors controlling mast cell activation, with a focus on receptor signaling and potential therapies for allergic disease. Specifically, we will discuss our work with FcεRI and FγR signaling, IL-4, IL-10, and TGF-β1 treatment, and Stat5. We conclude with potential therapeutics for allergic disease. Much of these efforts have been influenced by the work of Bill Paul. With many mechanistic targets for mast cell activation and different classes of therapeutics being studied, there is reason to be hopeful for continued clinical progress in this area.
Cellular Immunology | 2017
Jamie Josephine Avila McLeod; Heather L. Caslin; Andrew J. Spence; Elizabeth Motunrayo Kolawole; Amina Abdul Qayum; Anuya Paranjape; Marcela Taruselli; Tamara T. Haque; Kasalina N. Kiwanuka; Howard L. Elford; John J. Ryan
Mast cell activation via the high-affinity IgE receptor (FcεRI) elicits production of inflammatory mediators central to allergic disease. As a synthetic antioxidant and a potent ribonucleotide reductase (RNR) inhibitor, Didox (3,4-dihyroxybenzohydroxamic acid) has been tested in clinical trials for cancer and is an attractive therapeutic for inflammatory disease. We found that Didox treatment of mouse bone marrow-derived mast cells (BMMC) reduced IgE-stimulated degranulation and cytokine production, including IL-6, IL-13, TNF and MIP-1a (CCL3). These effects were consistent using BMMC of different genetic backgrounds and peritoneal mast cells. While the RNR inhibitor hydroxyurea had little or no effect on IgE-mediated function, high concentrations of the antioxidant N-acetylcysteine mimicked Didox-mediated suppression. Furthermore, Didox increased expression of the antioxidant genes superoxide dismutase and catalase, and suppressed DCFH-DA fluorescence, indicating reduced reactive oxygen species production. Didox effects were not due to changes in FcεRI expression or cell viability, suggesting it inhibits signaling required for inflammatory cytokine production. In support of this, we found that Didox reduced FcεRI-mediated AP-1 and NFκB transcriptional activity. Finally, Didox suppressed mast cell-dependent, IgE-mediated passive systemic anaphylaxis in vivo. These data demonstrate the potential use for Didox asa means of antagonizing mast cell responses in allergic disease.
Archive | 2018
Heather L. Caslin; Marcela Taruselli; Anuya Paranjape; Kasalina N. Kiwanuka; Tamara T. Haque; Alena P. Chumanevich; Carole A. Oskeritzian; John J. Ryan
Mast cells and basophils are important innate immune cells involved in resistance to parasitic infection and are critical orchestrators of allergic disease. The relative ease with which they are cultured from mouse or human tissues allows one to work with primary cells that maintain a differentiated and functional phenotype. In this chapter, we describe the methods by which mouse mast cells and basophils can be cultured from bone marrow. We also provide methods for isolating and expanding mouse peritoneal mast cells and human skin mast cells.
Journal of Immunology | 2016
Patrick A Paez; Elizabeth Motunrayo Kolawole; Kasalina N. Kiwanuka; Victor Ndaw; Marcela Taruselli; Anuya Paranjape; Daniel Abebayehu; Tamara T. Haque; John J. Ryan