Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anwar Hossain is active.

Publication


Featured researches published by Anwar Hossain.


Molecular and Cellular Biology | 2006

Mir-17-5p Regulates Breast Cancer Cell Proliferation by Inhibiting Translation of AIB1 mRNA

Anwar Hossain; Macus Tien Kuo; Grady F. Saunders

ABSTRACT MicroRNAs are an extensive family of ∼22-nucleotide-long noncoding RNAs expressed in a wide range of eukaryotes, including humans, and they are important in development and disease. We found that microRNA Mir-17-5p has extensive complementarity to the mRNA of AIB1 (named for “amplified in breast cancer 1”). Cell culture experiments showed that AIB1 expression was downregulated by Mir-17-5p, primarily through translational inhibition. Expression of Mir-17-5p was low in breast cancer cell lines. We also found that downregulation of AIB1 by Mir-17-5p resulted in decreased estrogen receptor-mediated, as well as estrogen receptor-independent, gene expression and decreased proliferation of breast cancer cells. Mir-17-5p also completely abrogated the insulin-like growth factor 1-mediated, anchorage-independent growth of breast cancer cells. Our results reveal that Mir-17-5p has a role as a tumor suppressor in breast cancer cells.


Molecular Pharmacology | 2008

Transcription Factor Sp1 Plays an Important Role in the Regulation of Copper Homeostasis in Mammalian Cells

Im-Sook Song; Helen H.W. Chen; Isamu Aiba; Anwar Hossain; Zheng D. Liang; Leo W. J. Klomp; Macus Tien Kuo

Copper is an essential metal nutrient, yet copper overload is toxic. Here, we report that human copper transporter (hCtr) 1 plays an important role in the maintenance of copper homeostasis by demonstrating that expression of hCtr1 mRNA was up-regulated under copper-depleted conditions and down-regulated under copper-replete conditions. Overexpression of full-length hCtr1 by transfection with a recombinant hCtr1 cDNA clone reduced endogenous hCtr1 mRNA levels, whereas overexpression of N terminus-deleted hCtr1 did not change endogenous hCtr1 mRNA levels, suggesting that increased functional hCtr1 transporter, which leads to increased intracellular copper content, down-regulates the endogenous hCtr1 mRNA. A luciferase assay using reporter constructs containing the hCtr1 promoter sequences revealed that three Sp1 binding sites are involved in the basal and copper concentration-dependent regulation of hCtr1 expression. Modulation of Sp1 levels affected the expression of hCtr1. We further demonstrated that the zinc-finger domain of Sp1 functions as a sensor of copper that regulates hCtr1 up and down in response to copper concentration variations. Our results demonstrate that mammalian copper homeostasis is maintained at the hCtr1 mRNA level, which is regulated by the Sp1 transcription factor.


Molecular Pharmacology | 2008

Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtr1

Helen H.W. Chen; Im-Sook Song; Anwar Hossain; Min-Koo Choi; Yoshiaki Yamane; Zheng D. Liang; Jia Lu; Lily Y. H. Wu; Zahid H. Siddik; Leo W. J. Klomp; Niramol Savaraj; Macus Tien Kuo

Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) up-regulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunit. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Because the GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into consideration that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with an expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through up-regulation of human copper transporter (hCtr) 1, which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. Although rates of copper transport were also up-regulated in the transfected cells, these cells exhibited biochemical signature of copper deficiency, suggesting that GSH functions as an intracellular copper-chelator and that overexpression of GSH can alter copper metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes the bioavailable copper pool, leading to up-regulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications in that modulation of the intracellular copper pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents.


Neurosurgery | 2010

Isolation and perivascular localization of mesenchymal stem cells from mouse brain

Seok Gu Kang; Naoki Shinojima; Anwar Hossain; Joy Gumin; Raymund L. Yong; Howard Colman; Frank C. Marini; Michael Andreeff; Frederick F. Lang

BACKGROUNDAlthough originally isolated from the bone marrow, mesenchymal stem cells (MSCs) have recently been detected in other tissues. However, little is known about MSCs in the brain. OBJECTIVETo determine the extent to which cells with the features of MSCs exist in normal brain tissue and to determine the location of these cells in the brain. METHODSSingle-cell suspensions from mouse brains were cultured according to the same methods used for culturing bone marrow–derived MSCs (BM-MSCs). These brain-derived cells were analyzed by fluorescence-activated cell sorting for surface markers associated with BM-MSCs (stem cell antigen 1 [Sca-1+], CD9+, CD45−, CD11b−, and CD31−). Brain-derived cells were exposed to mesenchymal differentiation conditions. To determine the locations of these cells within the brain, sections of normal brains were analyzed by immunostaining for Sca-1, CD31, and nerve/glial antigen 2. RESULTSCells morphologically similar to mouse BM-MSCs were identified and called brain-derived MSCs (Br-MSCs). Fluorescence-activated cell sorting indicated that the isolated cells had a surface marker profile similar to BM-MSCs, ie, Sca-1+, CD9+, CD45−, and CD11b−. Like BM-MSCs, Br-MSCs were capable of differentiation into adipocytes, osteocytes, and chondrocytes. Immunostaining indicated that Sca-1+ Br-MSCs are located around blood vessels and may represent progenitor cells that serve as a source of mesenchymal elements (eg, pericytes) within the brain. CONCLUSIONOur results indicate that cells similar to BM-MSCs exist in the brain. These Br-MSCs appear to be located within the vascular niche and may provide the mesenchymal elements of this niche. Because MSCs may be part of the cellular response to tissue injury, Br-MSCs may represent targets in the therapy of pathological processes such as stroke, trauma, and tumorigenesis.


Cancer Research | 2013

TGF-β Mediates Homing of Bone Marrow-Derived Human Mesenchymal Stem Cells to Glioma Stem Cells

Naoki Shinojima; Anwar Hossain; Tatsuya Takezaki; Juan Fueyo; Joy Gumin; Feng Gao; Felix Nwajei; Frank C. Marini; Michael Andreeff; Jun Ichi Kuratsu; Frederick F. Lang

Although studies have suggested that bone marrow human mesenchymal stem cells (BM-hMSC) may be used as delivery vehicles for cancer therapy, it remains unclear whether BM-hMSCs are capable of targeting cancer stem cells, including glioma stem cells (GSC), which are the tumor-initiating cells responsible for treatment failures. Using standard glioma models, we identify TGF-β as a tumor factor that attracts BM-hMSCs via TGF-β receptors (TGFβR) on BM-hMSCs. Using human and rat GSCs, we then show for the first time that intravascularly administered BM-hMSCs home to GSC-xenografts that express TGF-β. In therapeutic studies, we show that BM-hMSCs carrying the oncolytic adenovirus Delta-24-RGD prolonged the survival of TGF-β-secreting GSC xenografts and that the efficacy of this strategy can be abrogated by inhibition of TGFβR on BM-hMSCs. These findings reveal the TGF-β/TGFβR axis as a mediator of the tropism of BM-hMSCs for GSCs and suggest that TGF-β predicts patients in whom BM-hMSC delivery will be effective.


Biology of Reproduction | 2003

Role of Wilms Tumor 1 (WT1) in the Transcriptional Regulation of the Mullerian-Inhibiting Substance Promoter

Anwar Hossain; Grady F. Saunders

Abstract The Wilms tumor 1 (WT1) gene product may regulate the mullerian-inhibiting substance (MIS) gene, because mutations in WT1 can cause persistence of the mullerian duct in men. In the present study, we show by gel shift and chromatin immunoprecipitation assays that WT1 bound to a GC-rich sequence in the murine Mis promoter. Mutation in this site abolished WT1-mediated activation of the Mis promoter. The WT1, SRY box protein 9, and steroidogenic factor 1 could synergistically activate the Mis promoter, and at least two factors were necessary for minimal activation. The WT1 is an essential factor for activation of the Mis promoter; therefore, the persistence of the mullerian duct in patients with Denys-Drash syndrome may result from deregulation of the MIS gene.


Stem Cells | 2015

Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway.

Anwar Hossain; Joy Gumin; Feng Gao; Javier Figueroa; Naoki Shinojima; Tatsuya Takezaki; Waldemar Priebe; Diana Villarreal; Seok Gu Kang; Celine Joyce; Erik P. Sulman; Qianghu Wang; Frank C. Marini; Michael Andreeff; Howard Colman; Frederick F. Lang

Although mesenchymal stem cells (MSCs) have been implicated as stromal components of several cancers, their ultimate contribution to tumorigenesis and their potential to drive cancer stem cells, particularly in the unique microenvironment of human brain tumors, remain largely undefined. Consequently, using established criteria, we isolated glioma‐associated‐human MSCs (GA‐hMSCs) from fresh human glioma surgical specimens for the first time. We show that these GA‐hMSCs are nontumorigenic stromal cells that are phenotypically similar to prototypical bone marrow‐MSCs. Low‐passage genomic sequencing analyses comparing GA‐hMSCs with matched tumor‐initiating glioma stem cells (GSCs) suggest that most GA‐hMSCs (60%) are normal cells recruited to the tumor (group 1 GA‐hMSCs), although, rarely (10%), GA‐hMSCs may differentiate directly from GSCs (group 2 GA‐hMSCs) or display genetic patterns intermediate between these groups (group 3 GA‐hMSCs). Importantly, GA‐hMSCs increase proliferation and self‐renewal of GSCs in vitro and enhance GSC tumorigenicity and mesenchymal features in vivo, confirming their functional significance within the GSC niche. These effects are mediated by GA‐hMSC‐secreted interleukin‐6, which activates STAT3 in GSCs. Our results establish GA‐hMSCs as a potentially new stromal component of gliomas that drives the aggressiveness of GSCs, and point to GA‐hMSCs as a novel therapeutic target within gliomas. Stem Cells 2015;33:2400–2415


Journal of Biological Chemistry | 2006

N-terminally Truncated WT1 Protein with Oncogenic Properties Overexpressed in Leukemia

Anwar Hossain; Molly Nixon; Macus Tien Kuo; Grady F. Saunders

WT1 was originally identified as an inactivated gene in Wilms tumor, a childhood kidney cancer. Alternative splicing of the WT1 transcript generates four major protein isoforms, each having different functional properties. Here we characterized a short transcript originating from a second promoter located within intron 1 of WT1. This 2.3-kb sWT1 transcript encodes a protein of ∼35–37 kDa that retains intact DNA-binding and transactivation domains but lacks the 147 amino acids at the N terminus required for transcriptional repression. We found sWT1 to be a more potent transcriptional activator than WT1 for cyclin E and insulin-like growth factor 1 receptor promoters, which are normally repressed by WT1. The expression patterns of the sWT1 and WT1 transcripts differed slightly in various organs; we found sWT1 protein in tissue samples from adult testis and fetal kidney, with low-level expression in adult kidney as well. The sWT1 transcript, but not the full-length transcript, was over-expressed in the leukemia samples tested. sWT1-specific small interfering RNA retarded the proliferation of leukemia cell line K562 in vitro. Finally, sWT1 cooperated with Ras in transforming primary fibroblasts in vitro. Further studies are needed to clarify the oncogenic behavior of this isoform and to determine the mechanism underlying its up-regulation in leukemia and other forms of cancer.


Molecular Pharmacology | 2008

Elevated GSH Level Increases Cadmium Resistance through Down-Regulation of Sp1-Dependent Expression of the Cadmium Transporter ZIP8

Isamu Aiba; Anwar Hossain; Macus Tien Kuo

Cadmium is a nonessential toxic metal in mammals. Its toxicity is mainly caused by interactions with cellular proteins that result in protein dysfunction and then disturb normal cellular functions. Glutathione (GSH) has been reported to play a role in cadmium resistance by serving as a cofactor for multidrug resistance protein 1/GS-X pump-mediated cadmium elimination. To further investigate the role of GSH in cadmium toxicity, we carried out a comparative study using small-cell lung cancer-derived cell lines, SR3A, and those that were stably transfected with glutamate cysteine ligase catalytic subunit (GCLC), a rate-limiting enzyme in GSH biosynthesis. These GCLC stably transfected cell lines produced higher levels of GSH and were more resistant to cadmium toxicity than the parental cell line was. The rates of cadmium uptake were reduced in these GCLC-transfected cell lines, which were associated with down-regulation of the cadmium transporter ZIP8/SLC39A8. Further analyses demonstrated that Sp1 binding site at the proximal promoter region of ZIP8 was sensitive to the GSH level and that the expression level of transcription factor Sp1 was reduced by increased GSH levels. We also demonstrated that low concentrations of cadmium exposure down-regulated ZIP8 expression with concomitant reduction of Sp1 expression. Taken together, these results demonstrate the importance of Sp1 in the regulation of ZIP8 expression. More important, our results reveal a new mechanism by which elevated GSH levels confer cadmium resistance by down-regulation of ZIP8 expression through the suppression of Sp1.


Cancer Research | 2017

Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587.

Javier Figueroa; Lynette M. Phillips; Tal Shahar; Anwar Hossain; Joy Gumin; Hoon Kim; Andrew J. Bean; George A. Calin; Juan Fueyo; Edgar T. Walters; Raghu Kalluri; Roel G.W. Verhaak; Frederick F. Lang

Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR.

Collaboration


Dive into the Anwar Hossain's collaboration.

Top Co-Authors

Avatar

Joy Gumin

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Frederick F. Lang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Feng Gao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grady F. Saunders

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Macus Tien Kuo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tal Shahar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brittany C.Parker Kerrigan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Erik P. Sulman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yuzaburo Shimizu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge