Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anyonya R. Guntur is active.

Publication


Featured researches published by Anyonya R. Guntur.


bonekey Reports | 2013

IGF-1 regulation of key signaling pathways in bone.

Anyonya R. Guntur; Clifford J. Rosen

Insulin-like growth factor 1 (IGF-1) is an unique peptide that functions in an endocrine/paracrine and autocrine manner in most tissues. Although it was postulated initially that liver-derived IGF-1 was the major source of IGF-1 (that is, the somatomedin hypothesis), it is also produced in a wide variety of tissues and can function in numerous ways as both a proliferative and differentiative factor. One such tissue is bone and all cell lineages in the skeleton have been shown to not only require IGF-1 for normal development and function but also to respond to IGF-1 via the IGF-1 receptor. Ligand-receptor activation leads to several distinct downstream signaling cascades, which have significant implications for cell survival, protein synthesis and energy utilization. The novel role of IGF-1 in regulating metabolic demands of the bone remodeling unit is currently under investigation. More studies are likely to shed new light on various aspects of skeletal physiology and potentially may lead to new therapeutics.


Journal of Endocrinology | 2011

The skeleton: a multi-functional complex organ. New insights into osteoblasts and their role in bone formation: the central role of PI3Kinase

Anyonya R. Guntur; Clifford J. Rosen

Studies on bone development, formation and turnover have grown exponentially over the last decade in part because of the utility of genetic models. One area that has received considerable attention has been the phosphatidylinositol 3-kinase (PI3K) signaling pathway, which has emerged as a major survival network for osteoblasts. Genetic engineering has enabled investigators to study downstream effectors of PI3K by directly overexpressing activated forms of AKT in cells of the skeletal lineage or deleting Pten that leads to a constitutively active AKT. The results from these studies have provided novel insights into bone development and remodeling, critical processes in the lifelong maintenance of skeletal health. This paper reviews those data in relation to recent advances in osteoblast biology and their potential relevance to chronic disorders of the skeleton and their treatment.


Endocrinology | 2014

Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass.

Anyonya R. Guntur; Phuong Le; Charles R. Farber; Clifford J. Rosen

Osteoblastogenesis is the process by which mesenchymal stem cells differentiate into osteoblasts that synthesize collagen and mineralize matrix. The pace and magnitude of this process are determined by multiple genetic and environmental factors. Two inbred strains of mice, C3H/HeJ and C57BL/6J, exhibit differences in peak bone mass and bone formation. Although all the heritable factors that differ between these strains have not been elucidated, a recent F1 hybrid expression panel (C3H × B6) revealed major genotypic differences in osteoblastic genes related to cellular respiration and oxidative phosphorylation. Thus, we hypothesized that the metabolic rate of energy utilization by osteoblasts differed by strain and would ultimately contribute to differences in bone formation. In order to study the bioenergetic profile of osteoblasts, we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) first in a preosteoblastic cell line MC3T3-E1C4 and subsequently in primary calvarial osteoblasts from C3H and B6 mice at days 7, 14, and 21 of differentiation. During osteoblast differentiation in media containing ascorbic acid and β-glycerophosphate, all 3 cell types increased their oxygen consumption and extracellular acidification rates compared with the same cells grown in regular media. These increases are sustained throughout differentiation. Importantly, C3H calvarial osteoblasts had greater oxygen consumption rates than B6 consistent with their in vivo phenotype of higher bone formation. Interestingly, osteoblasts utilized both oxidative phosphorylation and glycolysis during the differentiation process although mature osteoblasts were more dependent on glycolysis at the 21-day time point than oxidative phosphorylation. Thus, determinants of oxygen consumption reflect strain differences in bone mass and provide the first evidence that during collagen synthesis osteoblasts use both glycolysis and oxidative phosphorylation to synthesize and mineralize matrix.


Development | 2011

Conditional ablation of Pten in osteoprogenitors stimulates FGF signaling.

Anyonya R. Guntur; Martina I. Reinhold; Joe Cuellar; Michael C. Naski

Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a direct antagonist of phosphatidylinositol 3 kinase. Pten is a well recognized tumor suppressor and is one of the most commonly mutated genes in human malignancies. More recent studies of development and stem cell behavior have shown that PTEN regulates the growth and differentiation of progenitor cells. Significantly, PTEN is found in osteoprogenitor cells that give rise to bone-forming osteoblasts; however, the role of PTEN in bone development is incompletely understood. To define how PTEN functions in osteoprogenitors during bone development, we conditionally deleted Pten in mice using the cre-deleter strain Dermo1cre, which targets undifferentiated mesenchyme destined to form bone. Deletion of Pten in osteoprogenitor cells led to increased numbers of osteoblasts and expanded bone matrix. Significantly, osteoblast development and synthesis of osteoid in the nascent bone collar was uncoupled from the usual tight linkage to chondrocyte differentiation in the epiphyseal growth plate. The expansion of osteoblasts and osteoprogenitors was found to be due to augmented FGF signaling as evidenced by (1) increased expression of FGF18, a potent osteoblast mitogen, and (2) decreased expression of SPRY2, a repressor of FGF signaling. The differentiation of osteoblasts was autonomous from the growth plate chondrocytes and was correlated with an increase in the protein levels of GLI2, a transcription factor that is a major mediator of hedgehog signaling. We provide evidence that increased GLI2 activity is also a consequence of increased FGF signaling through downstream events requiring mitogen-activated protein kinases. To test whether FGF signaling is required for the effects of Pten deletion, we deleted one allele of fibroblast growth factor receptor 2 (FGFR2). Significantly, deletion of FGFR2 caused a partial rescue of the Pten-null phenotype. This study identifies activated FGF signaling as the major mediator of Pten deletion in osteoprogenitors.


Bone | 2012

N-cadherin adherens junctions mediate osteogenesis through PI3K signaling

Anyonya R. Guntur; Clifford J. Rosen; Michael C. Naski

During endochondral ossification, the cartilage is surrounded by a layer of cells that constitute the perichondrium. Communication between osteoblasts in the perichondrium via N-cadherin adherens junctions is essential for endochondral bone growth. We observed that adherens junction molecule N-cadherin and its interacting partners p120, β-catenin and PTEN are expressed by cells present in the perichondrium. To study if N-cadherin mediated adherens junctions play a role in mediating signal transduction events during bone development, we utilized MC3T3E1 preosteoblasts plated at sub confluent (low) and confluent (high) densities to mimic adherens junction formation. When MC3T3E1 cells were plated at high density we observed an increase in phosphorylation of AKTSer473 and its downstream target GSK3Ser9, which coincided with an increase in Osterix, Osteomodulin and Osteoglycin gene expression. Using immunofluorescence, we identified N-cadherin, p120 and β-catenin localized at the membrane of MC3T3E1 cells. Treatment of confluent MC3T3E1 cells with an N-cadherin junction inhibitor-EGTA and a PI3K inhibitor LY294002 resulted in reduction of phosphorylation levels of AKT and GSK3 and expression of Osterix, Osteomodulin and Osteoglycin. Furthermore, utilizing an N-cadherin blocking antibody resulted in reduced AKT signaling and Osterix gene expression, suggesting that osteoblast junction formation is linked to activation of PI3K signaling, which leads to osteoblast differentiation. To further explore the strength of this linkage, we utilized a conditional knockout approach using Dermo1cre to delete β-catenin and PTEN, two important proteins known to be essential for adherens junctions and PI3K signaling, respectively. In the absence of β-catenin, we observed a decrease in adherens junctions and AKT signaling in the perichondrium. PTEN deletion, on the other hand, increased the number of cells expressing N-cadherin in the perichondrium. These observations show that N-cadherin mediated junctions between osteoblasts are needed for osteoblast gene transcription.


Annals of the New York Academy of Sciences | 2011

An essential role for the circadian-regulated gene Nocturnin in osteogenesis: the importance of local timekeeping in skeletal homeostasis

Anyonya R. Guntur; Masanobu Kawai; Phuong Le; Mary L. Bouxsein; Sheila Bornstein; Carla B. Green; Clifford J. Rosen

The role of circadian proteins in regulating whole‐body metabolism and bone turnover has been studied in detail and has led to the discovery of an elemental system for timekeeping involving the core genes Clock, Bmal1, Per, and Cry. Nocturnin (Noc; Ccrn4l), a peripheral circadian‐regulated gene has been shown to play a very important role in regulating adipogenesis by deadenylation of key mRNAs and intracytoplasmic transport of PPARγ. The role that it plays in osteogenesis has previously not been studied in detail. In this report we examined in vitro and in vivo osteogenesis in the presence and absence of Noc and show that loss of Noc enhances bone formation and can rescue rosiglitazone‐induced bone loss in mice. The circadian rhythm of Noc is likely to be an essential element of marrow stromal cell fate.


Endocrine Reviews | 2017

Energy Metabolism of the Osteoblast: Implications for Osteoporosis

Wen-Chih Lee; Anyonya R. Guntur; Fanxin Long; Clifford J. Rosen

Osteoblasts, the bone-forming cells of the remodeling unit, are essential for growth and maintenance of the skeleton. Clinical disorders of substrate availability (e.g., diabetes mellitus, anorexia nervosa, and aging) cause osteoblast dysfunction, ultimately leading to skeletal fragility and osteoporotic fractures. Conversely, anabolic treatments for osteoporosis enhance the work of the osteoblast by altering osteoblast metabolism. Emerging evidence supports glycolysis as the major metabolic pathway to meet ATP demand during osteoblast differentiation. Glut1 and Glut3 are the principal transporters of glucose in osteoblasts, although Glut4 has also been implicated. Wnt signaling induces osteoblast differentiation and activates glycolysis through mammalian target of rapamycin, whereas parathyroid hormone stimulates glycolysis through induction of insulin-like growth factor-I. Glutamine is an alternate fuel source for osteogenesis via the tricarboxylic acid cycle, and fatty acids can be metabolized to generate ATP via oxidative phosphorylation although temporal specificity has not been established. More studies with new model systems are needed to fully understand how the osteoblast utilizes fuel substrates in health and disease and how that impacts metabolic bone diseases.


PLOS ONE | 2013

Conditional Deletion of Cytochrome P450 Reductase in Osteoprogenitor Cells Affects Long Bone and Skull Development in Mice Recapitulating Antley-Bixler Syndrome: Role of a Redox Enzyme in Development

Satya Prakash Panda; Anyonya R. Guntur; Srikanth R. Polusani; Roberto J. Fajardo; Peter T. Gakunga; Linda J. Roman; Bettie Sue Siler Masters

NADPH-cytochrome P450 oxidoreductase (POR) is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syndrome (ABS). To probe the role of POR during bone development, we generated a conditional knockout mouse (CKO) by cross breeding Por lox/lox and Dermo1 Cre mice. CKO mice were smaller than their littermate controls and exhibited significant craniofacial and long bone abnormalities. Differential staining of the CKO mice skull bases shows premature fusion of the sphenooccipital and basioccipital-exoccipital synchondroses. Class III malocclusion was noted in adult knockout mice with an unusual overgrowth of the lower incisors. Shorter long bones were observed along with a reduction in the bone volume fraction, measured by microCT, in the Por-deleted mice compared to age- and sex-matched littermate controls. Concerted up- or down-regulation of proteins in the FGF signaling pathway observed by immunohistochemistry in the tibia samples of CKO mice compared to wild type controls shows a decrease in the FGF signaling pathway. To our knowledge, this is the first report of a mouse model that recapitulates both skull and long bone defects upon Por deletion, offering an approach to study the sequelae of POR mutations. This unique model demonstrates that P450 metabolism in bone itself is potentially important for proper bone development, and that an apparent link exists between the POR and FGF signaling pathways, begging the question of how an oxidation-reduction flavoprotein affects developmental and cellular signaling processes.


Adipocyte | 2017

Intracellular lipid droplets support osteoblast function

Elizabeth Rendina-Ruedy; Anyonya R. Guntur; Clifford J. Rosen

ABSTRACT Bone formation is an osteoblast-specific process characterized by high energy demands due to the secretion of matrix proteins and mineralization vesicles. While glucose has been reported as the principle fuel source for osteoblasts, recent evidence supports the tenet that osteoblasts can utilize fatty acids as well. Although the ability to accumulate lipid droplets has been demonstrated in many cell types, there has been little evidence that osteoblasts possess this characteristic. The current study provides evidence that osteoblastogenesis is associated with lipid droplet accumulation capable of supplying energy substrates (fatty acids) required for the differentiation process. Understanding the role of fatty acids in metabolic programming of the osteoblast may lead to novel approaches to increase bone formation and ultimately bone mass.


Toxicologic Pathology | 2017

Energy Metabolism of Bone

Katherine J. Motyl; Anyonya R. Guntur; Adriana L. Carvalho; Clifford J. Rosen

Biological processes utilize energy and therefore must be prioritized based on fuel availability. Bone is no exception to this, and the benefit of remodeling when necessary outweighs the energy costs. Bone remodeling is important for maintaining blood calcium homeostasis, repairing micro cracks and fractures, and modifying bone structure so that it is better suited to withstand loading demands. Osteoclasts, osteoblasts, and osteocytes are the primary cells responsible for bone remodeling, although bone marrow adipocytes and other cells may also play an indirect role. There is a renewed interest in bone cell energetics because of the potential for these processes to be targeted for osteoporosis therapies. In contrast, due to the intimate link between bone and energy homeostasis, pharmaceuticals that treat metabolic disease or have metabolic side effects often have deleterious bone consequences. In this brief review, we will introduce osteoporosis, discuss how bone cells utilize energy to function, evidence for bone regulating whole body energy homeostasis, and some of the unanswered questions and opportunities for further research in the field.

Collaboration


Dive into the Anyonya R. Guntur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael C. Naski

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettie Sue Siler Masters

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge