Anže Slosar
Brookhaven National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anže Slosar.
Monthly Notices of the Royal Astronomical Society | 2008
Chris J. Lintott; Kevin Schawinski; Anže Slosar; Kate Land; Steven P. Bamford; Daniel Thomas; M. Jordan Raddick; Robert C. Nichol; Alexander S. Szalay; Dan Andreescu; Phil Murray; Jan Vandenberg
In order to understand the formation and subsequent evolution of galaxies one must first distinguish between the two main morphological classes of massive systems: spirals and early-type systems. This paper introduces a project, Galaxy Zoo, which provides visual morphological classifications for nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS). This achievement was made possible by inviting the general public to visually inspect and classify these galaxies via the internet. The project has obtained more than 4 × 107 individual classifications made by ∼105 participants. We discuss the motivation and strategy for this project, and detail how the classifications were performed and processed. We find that Galaxy Zoo results are consistent with those for subsets of SDSS galaxies classified by professional astronomers, thus demonstrating that our data provide a robust morphological catalogue. Obtaining morphologies by direct visual inspection avoids introducing biases associated with proxies for morphology such as colour, concentration or structural parameters. In addition, this catalogue can be used to directly compare SDSS morphologies with older data sets. The colour–magnitude diagrams for each morphological class are shown, and we illustrate how these distributions differ from those inferred using colour alone as a proxy for morphology.
Astronomy and Astrophysics | 2015
Timothée Delubac; Julian Bautista; Nicolás G. Busca; James Rich; D. Kirkby; S. Bailey; Andreu Font-Ribera; Anže Slosar; Khee-Gan Lee; Matthew M. Pieri; Jean-Christophe Hamilton; Eric Aubourg; Michael Blomqvist; Jo Bovy; J. Brinkmann; W. Carithers; Kyle S. Dawson; Daniel J. Eisenstein; Satya Gontcho A Gontcho; Jean-Paul Kneib; Jean-Marc Le Goff; Daniel Margala; Jordi Miralda-Escudé; Adam D. Myers; Robert C. Nichol; P. Noterdaeme; Ross O’Connell; Matthew D. Olmstead; Nathalie Palanque-Delabrouille; Isabelle Pâris
We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2:1 z 3:5 from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2:34) and expansion rate, H(z = 2:34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA=rd =
Journal of Cosmology and Astroparticle Physics | 2008
Anže Slosar; Christopher M. Hirata; Uros Seljak; Shirley Ho; Nikhil Padmanabhan
Recent work has shown that the local non-Gaussianity parameter fNL induces a scale dependent bias, whose amplitude is growing with scale. Here we first rederive this result within the context of the peak–background split formalism and show that it only depends on the assumption of universality of the mass function, assuming that the halo bias only depends on the mass. We then use the extended Press–Schechter formalism to argue that this assumption may be violated and that the scale dependent bias will depend on other properties, such as the merging history of halos. In particular, in the limit of recent mergers we find that the effect is suppressed. Next we use these predictions in conjunction with a compendium of large scale data to put a limit on the value of fNL. When combining all data assuming that the halo occupation depends only on the halo mass, we get a limit of -29 (-65)<fNL<+70 (+93) at 95% (99.7%) confidence. While we use a wide range of data sets, our combined result is dominated by the signal from the SDSS photometric quasar sample. If the latter are modeled as recent mergers then the limits weaken to -31 (-96)<fNL<+70 (+96). These limits are comparable to the strongest current limits from the Wilkinson Anisotropy Probe (WMAP) five-year analysis, with no evidence of a positive signal in fNL. While the method needs to be thoroughly tested against large scale structure simulations with realistic quasar and galaxy formation models, our results indicate that this is a competitive method relative to the cosmic microwave background one and should be further pursued both observationally and theoretically.
Astronomy and Astrophysics | 2012
I. Pĝris; Patrick Petitjean; Eric Aubourg; S. Bailey; Nicholas P. Ross; Adam D. Myers; Michael A. Strauss; Scott F. Anderson; E. Arnau; Julian E. Bautista; Dmitry Bizyaev; Adam S. Bolton; Jo Bovy; W. N. Brandt; Howard J. Brewington; J. R. Browstein; Nicolás G. Busca; Daniel M. Capellupo; W. Carithers; Rupert A. C. Croft; Kyle S. Dawson; Timothée Delubac; Daniel J. Eisenstein; P. Engelke; Xiaohui Fan; N. Filiz Ak; Hayley Finley; Andreu Font-Ribera; Jian Ge; Robert R. Gibson
We present the Data Release 9 Quasar (DR9Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the survey, are spectrocopically confirmed as quasars via visual inspection, have luminosities Mi[z = 2] 2.15 (61 931) is ~2.8 times larger than the number of z > 2.15 quasars previously known. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 7533 broad absorption line quasars and gives their characteristics. For each object the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3600−10 500 A at a spectral resolution in the range 1300 < R < 2500; the spectra can be retrieved from the SDSS Catalog Archive Server. We also provide a supplemental list of an additional 949 quasars that have been identified, among galaxy targets of the BOSS or among quasar targets after DR9 was frozen.
Journal of Cosmology and Astroparticle Physics | 2014
Andreu Font-Ribera; D. Kirkby; Nicolás G. Busca; Jordi Miralda-Escudé; Nicholas P. Ross; Anže Slosar; James Rich; Eric Aubourg; S. Bailey; Vaishali Bhardwaj; Julian Bautista; Florian Beutler; Dmitry Bizyaev; Michael Blomqvist; Howard J. Brewington; J. Brinkmann; Joel R. Brownstein; Bill Carithers; Kyle S. Dawson; Timothée Delubac; Daniel J. Eisenstein; Jian Ge; Karen Kinemuchi; Khee Gan Lee; Viktor Malanushenko; Elena Malanushenko; Moses Marchante; Daniel Margala; Demitri Muna; Adam D. Myers
Author(s): Font-Ribera, A; Kirkby, D; Busca, N; Miralda-Escude, J; Ross, NP; Slosar, A; Rich, J; Aubourg, E; Bailey, S; Bhardwaj, V; Bautista, J; Beutler, F; Bizyaev, D; Blomqvist, M; Brewington, H; Brinkmann, J; Brownstein, JR; Carithers, B; Dawson, KS; Delubac, T; Ebelke, G; Eisenstein, DJ; Ge, J; Kinemuchi, K; Lee, KG; Malanushenko, V; Malanushenko, E; Marchante, M; Margala, D; Muna, D; Myers, AD; Noterdaeme, P; Oravetz, D; Palanque-Delabrouille, N; Pâris, I; Petitjean, P; Pieri, MM; Rossi, G; Schneider, DP; Simmons, A; Viel, M; Yeche, C; York, DG | Abstract: We measure the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight c/(H(z = 2.36)rs) = 9.0±0.3 and across the line of sight DA (z = 2.36)/rs = 10.8±0.4, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data (rs = 147.49 Mpc), we can translate these results to a measurement of the Hubble parameter of H(z = 2.36) = 226±8 km s -1 Mpc-1 and of the angular diameter distance of D A (z = 2.36) = 1590±60 Mpc. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.©2014 IOP Publishing Ltd and Sissa Medialab srl.
Physical Review D | 2008
G.L. Fogli; E. Lisi; A. Marrone; Alessandro Melchiorri; A. Palazzo; A. M. Rotunno; Paolo Serra; Joseph Silk; Anže Slosar
In this followup to Phys. Rev. D 75, 053001 (2007) , we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-year and other data). We discuss their interplay with the final 0{nu}2{beta} decay results in {sup 76}Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0{nu}2{beta} limits in {sup 130}Te recently set by Cuoricino and on prospective limits or signals from the Karlsruhe tritium neutrino experiment.
Journal of Cosmology and Astroparticle Physics | 2013
Anže Slosar; Vid Iršič; D. Kirkby; S. Bailey; Nicolás G. Busca; Timothée Delubac; James Rich; Eric Aubourg; Julian Bautista; Vaishali Bhardwaj; Michael Blomqvist; Adam S. Bolton; Jo Bovy; Joel R. Brownstein; Bill Carithers; Rupert A. C. Croft; Kyle S. Dawson; Andreu Font-Ribera; J.M. Le Goff; Shirley Ho; K. Honscheid; Khee-Gan Lee; Daniel Margala; Patrick McDonald; Bumbarija Medolin; Jordi Miralda-Escudé; Adam D. Myers; Robert C. Nichol; P. Noterdaeme; Nathalie Palanque-Delabrouille
We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-α flux fluctuations at a redshift zeff = 2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard ΛCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100 × (αiso − 1) = −1.6+2.0 +4.3 +7.4−2.0 −4.1 −6.8 (stat.) ±1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat ΛCDM with Ωm = 0.27, h = 0.7). When fitting separately for the radial and transversal dilation factors we find marginalised constraints 100 × (α|| − 1) = −1.3+3.5 +7.6 +12.3−3.3 −6.7 −10.2 (stat.) ±2.0 (syst.) and 100 × (α⊥ − 1) = −2.2+7.4 +17−7.1 −15 (stat.) ±3.0 (syst.). The dilation factor measurements are significantly correlated with cross-correlation coefficient of ~ −0.55. Errors become significantly non-Gaussian for deviations over 3 standard deviations from best fit value. Because of the data cuts and analysis method, these measurements give tighter constraints than a previous BAO analysis of the BOSS DR9 Lyman-α sample, providing an important consistency test of the standard cosmological model in a new redshift regime.
Monthly Notices of the Royal Astronomical Society | 2009
Chris Lintott; Kevin Schawinski; William C. Keel; Hanny van Arkel; Nicola Bennert; Edward M. Edmondson; Daniel Thomas; Dan Smith; Peter D. Herbert; M. J. Jarvis; Shanil N. Virani; Dan Andreescu; Steven P. Bamford; Kate Land; Phil Murray; Robert C. Nichol; M. Jordan Raddick; Anže Slosar; Alexander S. Szalay; Jan Vandenberg
We report the discovery of an unusual object near the spiral galaxy IC 2497, discovered by visual inspection of the Sloan Digital Sky Survey (SDSS) as part of the Galaxy Zoo project. The object, known as Hanny’s Voorwerp, is bright in the SDSS g band due to unusually strong [O III]4959, 5007 emission lines. We present the results of the first targeted observations of the object in the optical, ultraviolet and X-ray, which show that the object contains highly ionized gas. Although the line ratios are similar to extended emission-line regions near luminous active galactic nucleus (AGN), the source of this ionization is not apparent. The emission-line properties, and lack of X-ray emission from IC 2497, suggest either a highly obscured AGN with a novel geometry arranged to allow photoionization of the object but not the galaxy’s own circumnuclear gas, or, as we argue, the first detection of a quasar light echo. In this case, either the luminosity of the central source has decreased dramatically or else the obscuration in the system has increased within 10 5 yr. This object may thus represent the first direct probe
Monthly Notices of the Royal Astronomical Society | 2010
Daniel Darg; Sugata Kaviraj; Chris Lintott; Kevin Schawinski; Marc Sarzi; Steven P. Bamford; Joseph Silk; Dan Andreescu; P. G. Murray; Robert C. Nichol; M. J. Raddick; Anže Slosar; Alexander S. Szalay; Daniel Thomas; Jan Vandenberg
Following the study of Darg et al., we explore the environments, optical colours, stellar masses, star formation and active galactic nucleus activity in a sample of 3003 pairs of merging galaxies drawn from the Sloan Digital Sky Survey using visual classifications from the Galaxy Zoo project. While Darg et al. found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must therefore arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being ‘over-observed’ in mergers. We also suggest that the transition mass 3 × 1010 M⊙, noted by Kauffmann et al., below which ellipticals are rare could be linked to disc survival/destruction in mergers.
Monthly Notices of the Royal Astronomical Society | 2010
Daniel Darg; Sugata Kaviraj; Chris Lintott; Kevin Schawinski; Marc Sarzi; Steven P. Bamford; Joseph Silk; R. Proctor; Dan Andreescu; P. G. Murray; Robert C. Nichol; M. J. Raddick; Anže Slosar; Alexander S. Szalay; Daniel Thomas; Jan Vandenberg
We present the largest, most homogeneous catalogue of merging galaxies in the nearby Universe obtained through the Galaxy Zoo project – an interface on the World Wide Web enabling large-scale morphological classification of galaxies through visual inspection of images from the Sloan Digital Sky Survey (SDSS). The method converts a set of visually inspected classifications for each galaxy into a single parameter (the ‘weighted-merger-vote fraction,’fm) which describes our confidence that the system is part of an ongoing merger. We describe how fm is used to create a catalogue of 3003 visually selected pairs of merging galaxies from the SDSS in the redshift range 0.005 < z < 0.1. We use our merger sample and values of fm applied to the SDSS Main Galaxy Spectral sample to estimate that the fraction of volume-limited (Mr < −20.55) major mergers (1/3 < M*1/M*2 < 3) in the nearby Universe is 1–3 ×C per cent, where C∼ 1.5 is a correction factor for spectroscopic incompleteness. Having visually classified the morphologies of the constituent galaxies in our mergers, we find that the spiral-to-elliptical ratio of galaxies in mergers is higher by a factor of ∼2 relative to the global population. In a companion paper, we examine the internal properties of these merging galaxies and conclude that this high spiral-to-elliptical ratio in mergers is due to a longer time-scale over which mergers with spirals are detectable compared to mergers with ellipticals.