Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aparna Vasanthakumar is active.

Publication


Featured researches published by Aparna Vasanthakumar.


Cancer Cell | 2010

Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation

Maria E. Figueroa; Omar Abdel-Wahab; Chao Lu; Patrick S. Ward; Jay Patel; Alan Shih; Yushan Li; Neha Bhagwat; Aparna Vasanthakumar; Hugo F. Fernandez; Martin S. Tallman; Zhuoxin Sun; Kristy L. Wolniak; Justine K. Peeters; Wei Liu; Sung E. Choe; Valeria Fantin; Elisabeth Paietta; Bob Löwenberg; Jonathan D. Licht; Lucy A. Godley; Ruud Delwel; Peter J. M. Valk; Craig B. Thompson; Ross L. Levine; Ari Melnick

Cancer-associated IDH mutations are characterized by neomorphic enzyme activity and resultant 2-hydroxyglutarate (2HG) production. Mutational and epigenetic profiling of a large acute myeloid leukemia (AML) patient cohort revealed that IDH1/2-mutant AMLs display global DNA hypermethylation and a specific hypermethylation signature. Furthermore, expression of 2HG-producing IDH alleles in cells induced global DNA hypermethylation. In the AML cohort, IDH1/2 mutations were mutually exclusive with mutations in the α-ketoglutarate-dependent enzyme TET2, and TET2 loss-of-function mutations were associated with similar epigenetic defects as IDH1/2 mutants. Consistent with these genetic and epigenetic data, expression of IDH mutants impaired TET2 catalytic function in cells. Finally, either expression of mutant IDH1/2 or Tet2 depletion impaired hematopoietic differentiation and increased stem/progenitor cell marker expression, suggesting a shared proleukemogenic effect.


Cancer Cell | 2011

Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation

Kelly Moran-Crusio; Linsey Reavie; Alan Shih; Omar Abdel-Wahab; Delphine Ndiaye-Lobry; Camille Lobry; Maria E. Figueroa; Aparna Vasanthakumar; Jay Patel; Xinyang Zhao; Fabiana Perna; Suveg Pandey; Jozef Madzo; Chun-Xiao Song; Qing Dai; Chuan He; Sherif Ibrahim; Miloslav Beran; Jiri Zavadil; Stephen D. Nimer; Ari Melnick; Lucy A. Godley; Iannis Aifantis; Ross L. Levine

Somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) gene occur in a significant proportion of patients with myeloid malignancies. Although there are extensive genetic data implicating TET2 mutations in myeloid transformation, the consequences of Tet2 loss in hematopoietic development have not been delineated. We report here an animal model of conditional Tet2 loss in the hematopoietic compartment that leads to increased stem cell self-renewal in vivo as assessed by competitive transplant assays. Tet2 loss leads to a progressive enlargement of the hematopoietic stem cell compartment and eventual myeloproliferation in vivo, including splenomegaly, monocytosis, and extramedullary hematopoiesis. In addition, Tet2(+/-) mice also displayed increased stem cell self-renewal and extramedullary hematopoiesis, suggesting that Tet2 haploinsufficiency contributes to hematopoietic transformation in vivo.


Nature Genetics | 2012

Dnmt3a is essential for hematopoietic stem cell differentiation

Grant A. Challen; Deqiang Sun; Mira Jeong; Min Luo; Jaroslav Jelinek; Jonathan S. Berg; Christoph Bock; Aparna Vasanthakumar; Hongcang Gu; Yuanxin Xi; Shoudan Liang; Yue Lu; Gretchen J. Darlington; Alexander Meissner; Jean-Pierre Issa; Lucy A. Godley; Wei Li; Margaret A. Goodell

Loss of the de novo DNA methyltransferases Dnmt3a and Dnmt3b in embryonic stem cells obstructs differentiation; however, the role of these enzymes in somatic stem cells is largely unknown. Using conditional ablation, we show that Dnmt3a loss progressively impairs hematopoietic stem cell (HSC) differentiation over serial transplantation, while simultaneously expanding HSC numbers in the bone marrow. Dnmt3a-null HSCs show both increased and decreased methylation at distinct loci, including substantial CpG island hypermethylation. Dnmt3a-null HSCs upregulate HSC multipotency genes and downregulate differentiation factors, and their progeny exhibit global hypomethylation and incomplete repression of HSC-specific genes. These data establish Dnmt3a as a critical participant in the epigenetic silencing of HSC regulatory genes, thereby enabling efficient differentiation.


Nature Neuroscience | 2011

5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging

Keith E. Szulwach; Xuekun Li; Yujing Li; Chun-Xiao Song; Hao Wu; Qing Dai; Hasan Irier; Anup K. Upadhyay; Marla Gearing; Allan I. Levey; Aparna Vasanthakumar; Lucy A. Godley; Qiang Chang; Xiaodong Cheng; Chuan He; Peng Jin

DNA methylation dynamics influence brain function and are altered in neurological disorders. 5-hydroxymethylcytosine (5-hmC), a DNA base that is derived from 5-methylcytosine, accounts for ∼40% of modified cytosine in the brain and has been implicated in DNA methylation–related plasticity. We mapped 5-hmC genome-wide in mouse hippocampus and cerebellum at three different ages, which allowed us to assess its stability and dynamic regulation during postnatal neurodevelopment through adulthood. We found developmentally programmed acquisition of 5-hmC in neuronal cells. Epigenomic localization of 5-hmC–regulated regions revealed stable and dynamically modified loci during neurodevelopment and aging. By profiling 5-hmC in human cerebellum, we found conserved genomic features of 5-hmC. Finally, we found that 5-hmC levels were inversely correlated with methyl-CpG–binding protein 2 dosage, a protein encoded by a gene in which mutations cause Rett syndrome. These data suggest that 5-hmC–mediated epigenetic modification is critical in neurodevelopment and diseases.


Nature Genetics | 2012

Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis

Lambert Busque; Jay Patel; Maria E. Figueroa; Aparna Vasanthakumar; Sylvie Provost; Zineb Hamilou; Luigina Mollica; Juan Li; Agnes Viale; Adriana Heguy; Maryam Hassimi; Nicholas D. Socci; Parva K. Bhatt; Mithat Gonen; Christopher E. Mason; Ari Melnick; Lucy A. Godley; Cameron Brennan; Omar Abdel-Wahab; Ross L. Levine

Aging is characterized by clonal expansion of myeloid-biased hematopoietic stem cells and by increased risk of myeloid malignancies. Exome sequencing of three elderly females with clonal hematopoiesis, demonstrated by X-inactivation analysis, identified somatic TET2 mutations. Recurrence testing identified TET2 mutations in 10 out of 182 individuals with X-inactivation skewing. TET2 mutations were specific to individuals with clonal hematopoiesis without hematological malignancies and were associated with alterations in DNA methylation.


Blood | 2011

Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors

Elodie Pronier; Carole Almire; Hayat Mokrani; Aparna Vasanthakumar; Audrey Simon; Barbara da Costa Reis Monte Mor; Aline Masse; Jean-Pierre Le Couedic; Frédéric Pendino; Bruno Carbonne; Jérôme Larghero; Jean-Luc Ravanat; Nicole Casadevall; Olivier A. Bernard; Nathalie Droin; Eric Solary; Lucy A. Godley; William Vainchenker; Isabelle Plo; François Delhommeau

TET2 converts 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC) in DNA and is frequently mutated in myeloid malignancies, including myeloproliferative neoplasms. Here we show that the level of 5-hmC is decreased in granulocyte DNA from myeloproliferative neoplasm patients with TET2 mutations compared with granulocyte DNA from healthy patients. Inhibition of TET2 by RNA interference decreases 5-hmC levels in both human leukemia cell lines and cord blood CD34(+) cells. These results confirm the enzymatic function of TET2 in human hematopoietic cells. Knockdown of TET2 in cord blood CD34(+) cells skews progenitor differentiation toward the granulomonocytic lineage at the expense of lymphoid and erythroid lineages. In addition, by monitoring in vitro granulomonocytic development we found a decreased granulocytic differentiation and an increase in monocytic cells. Our results indicate that TET2 disruption affects 5-hmC levels in human myeloid cells and participates in the pathogenesis of myeloid malignancies through the disturbance of myeloid differentiation.


Cancer Discovery | 2013

Mechanism-Based Epigenetic Chemosensitization Therapy of Diffuse Large B-Cell Lymphoma

Thomas Clozel; ShaoNing Yang; Rebecca Elstrom; Wayne Tam; Peter Martin; Matthias Kormaksson; Samprit Banerjee; Aparna Vasanthakumar; Biljana Culjkovic; David W. Scott; Sarah Wyman; Micheal Leser; Rita Shaknovich; Amy Chadburn; Fabrizio Tabbò; Lucy A. Godley; Randy D. Gascoyne; Katherine L. B. Borden; Giorgio Inghirami; John P. Leonard; Ari Melnick; Leandro Cerchietti

UNLABELLED Although aberrant DNA methylation patterning is a hallmark of cancer, the relevance of targeting DNA methyltransferases (DNMT) remains unclear for most tumors. In diffuse large B-cell lymphoma (DLBCL) we observed that chemoresistance is associated with aberrant DNA methylation programming. Prolonged exposure to low-dose DNMT inhibitors (DNMTI) reprogrammed chemoresistant cells to become doxorubicin sensitive without major toxicity in vivo. Nine genes were recurrently hypermethylated in chemoresistant DLBCL. Of these, SMAD1 was a critical contributor, and reactivation was required for chemosensitization. A phase I clinical study was conducted evaluating azacitidine priming followed by standard chemoimmunotherapy in high-risk patients newly diagnosed with DLBCL. The combination was well tolerated and yielded a high rate of complete remission. Pre- and post-azacitidine treatment biopsies confirmed SMAD1 demethylation and chemosensitization, delineating a personalized strategy for the clinical use of DNMTIs. SIGNIFICANCE The problem of chemoresistant DLBCL remains the most urgent challenge in the clinical management of patients with this disease. We describe a mechanism-based approach toward the rational translation of DNMTIs for the treatment of high-risk DLBCL.


Epigenetics | 2012

Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia

Jumpei Yamazaki; Rodolphe Taby; Aparna Vasanthakumar; Trisha Macrae; Kelly R. Ostler; Lanlan Shen; Hagop M. Kantarjian; Marcos R. Estecio; Jaroslav Jelinek; Lucy A. Godley; Jean-Pierre Issa

TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30) of patients. In contrast, only 1/30 patient had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A in the sites most frequently mutated in leukemia. Using bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutants and wild-type CMML cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We found that two non-CpG island promoters, AIM2 and SP140, were hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14,475 genes) previously found to be hypermethylated in TET2 mutant cases. However, total 5-methyl-cytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases (median = 14.0% and 9.8%, respectively) (p = 0.016). Thus, TET2 mutations affect global methylation in CMML but most of the changes are likely to be outside gene promoters.


Blood | 2011

DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation.

Rita Shaknovich; Leandro Cerchietti; Lucas Tsikitas; Matthias Kormaksson; Subhajyoti De; Maria E. Figueroa; Gianna Ballon; Shao Ning Yang; Nils Weinhold; Mark Reimers; Thomas Clozel; Karin Luttrop; Tomas J. Ekström; Jared Frank; Aparna Vasanthakumar; Lucy A. Godley; Franziska Michor; Olivier Elemento; Ari Melnick

The phenotype of germinal center (GC) B cells includes the unique ability to tolerate rapid proliferation and the mutagenic actions of activation induced cytosine deaminase (AICDA). Given the importance of epigenetic patterning in determining cellular phenotypes, we examined DNA methylation and the role of DNA methyltransferases in the formation of GCs. DNA methylation profiling revealed a marked shift in DNA methylation patterning in GC B cells versus resting/naive B cells. This shift included significant differential methylation of 235 genes, with concordant inverse changes in gene expression affecting most notably genes of the NFkB and MAP kinase signaling pathways. GC B cells were predominantly hypomethylated compared with naive B cells and AICDA binding sites were highly overrepresented among hypomethylated loci. GC B cells also exhibited greater DNA methylation heterogeneity than naive B cells. Among DNA methyltransferases (DNMTs), only DNMT1 was significantly up-regulated in GC B cells. Dnmt1 hypomorphic mice displayed deficient GC formation and treatment of mice with the DNA methyltransferase inhibitor decitabine resulted in failure to form GCs after immune stimulation. Notably, the GC B cells of Dnmt1 hypomorphic animals showed evidence of increased DNA damage, suggesting dual roles for DNMT1 in DNA methylation and double strand DNA break repair.


Cell Reports | 2014

TET1-Mediated Hydroxymethylation Facilitates Hypoxic Gene Induction in Neuroblastoma

Christopher J. Mariani; Aparna Vasanthakumar; Jozef Madzo; Ali Yesilkanal; Tushar D. Bhagat; Yiting Yu; Sanchari Bhattacharyya; Roland H. Wenger; Susan L. Cohn; Jayasri Nanduri; Amit Verma; Nanduri R. Prabhakar; Lucy A. Godley

SUMMARY The ten-eleven-translocation 5-methylcytosine dioxygenase (TET) family of enzymes catalyzes the conversion of 5-methylcytosine (5-mC) to 5-hydroxyme-thylcytosine (5-hmC), a modified cytosine base that facilitates gene expression. Cells respond to hypoxia by inducing a transcriptional program regulated in part by oxygen-dependent dioxygenases that require Fe(II) and α-ketoglutarate. Given that the TET enzymes also require these cofactors, we hypothesized that the TETs regulate the hypoxia-induced transcriptional program. Here, we demonstrate that hypoxia increases global 5-hmC levels, with accumulation of 5-hmC density at canonical hypoxia response genes. A subset of 5-hmC gains colocalize with hypoxia response elements facilitating DNA demethylation and HIF binding. Hypoxia results in transcriptional activation of TET1, and full induction of hypoxia-responsive genes and global 5-hmC increases require TET1. Finally, we show that 5-hmC increases and TET1 upregulation in hypoxia are HIF-1 dependent. These findings establish TET1-mediated 5-hmC changes as an important epigenetic component of the hypoxic response.

Collaboration


Dive into the Aparna Vasanthakumar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Abdel-Wahab

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross L. Levine

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chuan He

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge